Future ESR President defines the goals

During an exclusive European Hospital interview, in the run up to ECR 2015, Professor Lluis Donoso-Bach MD PhD, incoming President of the European Society of Radiology (ESR), outlines his plans to tackle challenges facing radiology in Europe – and anticipates a brighter future in Spain.

Interview: Mélisande Rouger

‘Promoting education remains our core business,’ Lluis Donoso-Bach confirms. ‘We will open new learning centres in Bogotá and Vienna, and are planning a further one in Moscow. We will also launch the ESR e-learning Platform at ECR 2015 and try to offer an online examination for the European Diploma in Radiology.

‘On the research front, we will continue our efforts concerning the quantification of data using biomarkers and biobanks, among others.

‘We will soon launch ESR iGuide, a clinical decision support system for European imaging referral guidelines. We recently created a first level of standards on safety, and want to explore the possibility of performing quality control directly on the level of the department management. Meanwhile, we will continue to promote the EuroSafe Imaging campaign to raise awareness on radiation protection.

‘We will also strengthen our lobbying actions with European institutions to influence EU legislation. We notably launched a Call for a European Action Plan for Medical Imaging last November, to highlight heterogeneities in Europe and promote harmonisation.’

What is the society’s stance on teleradiology?

‘Teleradiology should be a medical act that includes not only a report but also consultation with the patient, justification and control of the examination, and follow-up of the outcome. Out-sourcing can also do that, but the problem is that some companies only offer the report and for very low fees, which is what endangers the clinical part of our work.

‘We have published many position papers and work tirelessly with the EU Commission and Directorates General in the European Parliament to defend our position, the problem is that we are not always heard.

What upcoming IT solutions do you foresee in clinical practice?

‘There is a very clear trend for cloud computing. Working in a cloud will revolutionise the way we do imaging. It will be split into image acquisition, analysis and processing. We will need structured reports, where we can automatically combine information coming from all these phases. The way we write reports will change, and we will move from a subjective approach to using standardised vocabulary based on quantified and processed data. Our reports will be interoperable between different clouds, and systems will emerge to help radiologists write their reports accordingly.

Continued on page 2

Japanese firm celebrates 140 successful years

The son of a craftsman making Buddhist altars, he was driven to create instruments for physics and chemistry. Attending the Physics and Chemistry Research Institute he gained experience with a variety of technologies and fields of expertise. He was convinced that Japan, as a country with few natural resources, should work towards becoming a leader in science. At the dawn of the industrial revolution and scientific age in 1875 he founded his own business in Kiyamachi, Kyoto. His name was Gensio Shimadzu.
MRI-based AC may work better than CT-AC

PET/MRI scanners have great potential because they combine the strengths of two different systems. Previous problems resulting from respective, mutually exclusive physical effects of both procedures have been resolved. Now these scanners are being introduced to the hospital and assist in the detection of the position and spread of tumours as well as their metabolic activity, says Dr Harald H Quick, Professor for High-Field and Hybrid MRI Imaging at Duisburg-Essen University.

PET has high sensitivity. The system can locate and measure the very smallest amounts of radioisotopes in tumours and metastases and it also makes it possible to quantify their activity. This is important because it allows us to classify and differentiate different tumours based on certain thresholds,' Professor Quick explains. 'PET also allows us to monitor a therapy after the initial diagnosis and start of treatment and shows how the activity of cell lesions develops over time and whether or not the treatment is having the desired effect.'

To fully utilise PET strengths, attenuation correction (AC) is needed. This correction is carried out by software that, in turn, is based on a mathematical solution automatically implemented by the scanner. To make this work, you need to know exactly where in a patient’s body photons attenuate in the tissue on their way to the PET detector, and then it becomes possible to calculate the AC and thus determine the correct tracer activity in the tumour.

PET/CT hybrid systems – however, with the advantage that the raw data of CT imaging can be directly utilised for the AC of the patient tissue. However, with PET/MRI, AC must be performed with new MRI-based procedures. At the centre of this development are the Dixon method sequences, currently experiencing a revival in the context of MRI-based attenuation correction procedures.

The procedure involves the attribution of different levels of attenuation to different types of tissue (air, fat, soft tissue, bone). ‘We know topographically – similar to maps – which types of attenuating tissues are in which place.’ This can then be utilised in 3-D to work out the patient’s attenuation correction,’ he explains.

Although this works well, and is already integrated into clinical routine, room remains for improvement. With the help of comparative examinations, Prof. Quick and team are trying to determine how well MRI-based AC works compared to CT-AC. ‘Bones attenuate the PET signal comparatively strongly. The attenuating components of bones are not very visible in the MRI image and therefore cannot be adequately corrected,’ he explains.

This could change with the help of ultra-short TE pulse sequences (UTE), i.e. ultra-short echo time sequences. These facilitate the detection of cranial bones in the head and therefore improve the information on brain activity quantification. ‘We have thus created the opportunity to add another dimension to the above mentioned maps,’ Prof. Quick explains, significantly adding: ‘If, in the future, we want to look at the Alzheimer tracer distribution in the brain, it will be important to account for the bones as such (and soft tissue as is currently the case) so that we can determine activity more precisely.’

Technical pitfalls
Further technical obstacles that PET/MRI scanner manufacturers must overcome are the materials used. As is common in MRI imaging, RF receiver coils are used. These coils are within the field of the PET detector while the PET and MRI data are being acquired, and they attenuate the PET signals accordingly. Therefore, manufacturers should design the RF receiver coils in a way that makes them PET-transparent as possible. This applies to the materials used, distribution and the design.

Manufacturers and researchers hope to integrate the motion correction in its entirety into the examination procedure. The PET/MRI data are currently acquired independent-ly and simultaneously, but more or less side by side.

The objective is to utilise the technical opportunities of MRI imaging, to detect the patient’s head, respiratory and heart movements and to correct the PET data helped by this information on movements – meaning to achieve a more precise in vivo situation of the moving organs, tumours or smaller lesions.

‘MR-PET is another feature that will enhance the world of PET/ MRI. High Density is set to improve the spatial resolution of PET, which tends to reduce towards the edge of the image field for technical reasons. This effect can be corrected with the help of a mathematical model (point spread function, PSF), which may restore the resolution within this border area.’ This, Prof. Quick explains, helps to visualise otherwise almost invisible tracer lesions in the body better.'
Breast CT

3-D images of the entire breast from any orientation

The Koning Breast CT (KBCT) system, which has been granted FDA approval, provides 3-D breast images for diagnoses.

The technology ftp://5.10.164.234 can acquire hundreds of images in only ten seconds, producing true 3-D images to enable a fast procedure with excellent patient comfort, the manufacturer explains.

‘Optional accessories for KBCT include a biopsy bracket to enable KBCT-guided biopsies of suspicious lesions, and a collimator, used to limit the X-ray beam to the area of interest. The biopsy bracket provides 3-D targeting at comparable or lower radiation exposure compared to stereotactic-guided biopsy.’

A view like no other

The breast CT images have less distortion than mammography and the system is optimised to differentiate between the breast’s soft tissue and cancer tissue, Koning points out. These images will be very different from 2-D mammograms. They’re truly 3-D images of the entire breast from any orientation. You can scroll through the slices (up and down, left and right) and get a unique view of the breast like never before.

‘It gives doctors tremendous freedom in how they look at the interior of the breast and evaluate its structures. It’s almost like seeing the anatomy itself.’

No breast compression

As Ruola Ning PhD, Koning’s President and Founder, a pioneer and leading expert in Cone Beam CT Technology and sole inventor of cone beam breast CT technology, confirms: ‘KBCT represents a revolutionary advancement in breast cancer diagnosis.’

This is the first commercially available 3-D breast CT scanner designed specifically to image the entire breast with a single scan, without compression of the breast tissue - which means this procedure is far more comfortable for patients than regular mammography. Additionally, Koning adds that there is less radiation exposure than during a CT exam of the entire chest, because here only the breast is exposed to X-rays.

Optional accessories for KBCT include a biopsy bracket to enable KBCT-guided breast biopsies of suspicious lesions, and a collimator, used to limit the X-ray beam to the area of interest. The biopsy bracket provides 3-D targeting at comparable or lower radiation exposure compared to stereotactic-guided biopsy.

Future ESC President defines the goals

‘Besides, I believe we will have a five-year training scheme. Our hope lies with the national commission of the specialty, which is the official consulting agency of the ministry.’

Are you more pessimistic about the research situation?

‘I don’t like to exaggerate, but consequences of the financial crisis are dramatic. Budgets are low and grants have been reduced throughout Europe. There’s an impact everywhere, not just on radiology. In Spain the fall was brutal. Salaries in the public system have been cut by 25% over the past three years. Many doctors have left the country. We have had less problems with shortage lately. Five years ago, a resident would have received five job offers; now he or she will receive only one. Many very well trained radiologists from Latin America have helped us fill the gap. Spain is not doing that badly in other areas, such as PACS. We are above the European average in terms of IT equipment; almost 90% of Spanish hospitals have a running PACS. The electronic patient record is well developed in most Spanish regions. Generally, the atmosphere is improving. We’ve started going up again, everybody can feel that.’
Defining a role and routine differences

Before 2013, when Professor Dietmar Dinter became partner of Radiologie Schwetzingen, a multi-discipline group practice specialising in radiology and nuclear medicine, he was senior resident at the Institute of Clinical Radiology and Nuclear Medicine at University Hospital Mannheim (2005-2012) and head of its Nuclear Medicine Department (2012-2022). Was his work in nuclear medicine altered by the shift from hospital-based to practice-based patient care?

Interview: Sascha Keutel

Surprisingly, when asked about key differences between work in a hospital nuclear medicine department and in private practice, Professor Dietmar Dinter observed that he had more time for each patient when he was a hospital radiologist. In the practice there is a certain economic pressure and everything is tightly organised, he explained. Another big difference is staff composition. While we have only fully certified specialist physicians in our practice, in a hospital teaching plays a major role – particularly in larger teaching hospitals you have many examinations in which one or two junior physicians are supervised. That takes time. ‘In practice you gain experience more quickly due to the larger patient throughput, but you also have to arrive at the – hopefully correct – diagnostic decision more quickly.’

Do the range of exams and therapies differ?

In Germany, radioiodine therapy is pretty much limited to hospitals, since it cannot be properly performed in private practice because German radiation protection laws require in-patient facilities – the patient has to spend at least 48 hours in a “bunker”, an entirely separate area. Most practice-based physicians do not have access to such facilities. ‘There are also differences in terms of technology. Very few practices have a PET-CT, for example. That limits the range of exams compared to an emergency/out-patient facility or a hospital. Currently in Germany more than 100 PET-CT systems are installed in hospitals – most of these are operated at a loss due to the low reimbursement rates offered by statutory health insurers. ‘In some cases, hospitals cannot recover the costs of PET-CT, indeed they sometimes have to negotiate the number of exams they can perform with the health insurers. That’s impossible in private practice. The health insurers’ reimbursement parameters for PET-CT exams are clearly defined and adhered to. Lung cancer, for example, is usually imaged with PET-CT and the insurers reimburse. However, the Federal Joint Committee, the relevant non-government body, decided that the costs will only reimbursed if the exam is performed in a certified lung cancer centre with the cooperation of surgeons, oncologists and radiotherapists. Thus a number of clinical specialists are needed, such as thoracic surgeons, and tumour boards must be established to discuss the case. In a practice this is close to impossible, unless you negotiate many cooperation agreements with hospitals, which then send the patients to your practice.’

Do you face many other issues that were never contemplated when working in the hospital?

‘Yes, exactly! I learn a lot with all the new and different cases. The two-pronged approach in Germany with a practice-based and a hospital-based segment creates a multitude of referral, exam and treatment paths. Most patients in practices are referred there by other office-based physicians, whilst, in a hospital, you mostly see in-patients – unless the hospital has an out-patient department and thus treats in- as well as out-patients.’

Are there turf wars between hospital radiologist and those in practices?

‘There are patients, particularly those who need a bone scintigraphy, who are imaged in hospital although it would be better if they were referred to a practice: practices can often offer appointments much quicker and are closer to the patients’ place of residence, so patients can be treated in a familiar environment. But there are colleagues in emergency and out-patient departments who prefer having the exams performed entirely by the in-house team.’

Do you prefer working in hospital or in a practice?

‘That’s a difficult question because there are advantages and drawbacks to both. I’d like to have more time for our patients because, as a physician, one of the main reasons to work in a practice is patient contact, particularly in diagnostic radiology. As senior resident in a hospital you often only interpret MRI or CT images without ever having seen the patient, but in a practice many exams are scheduled per physician, so you have three to six minutes to talk to a patient. This is just not enough time to communicate a diagnosis that might change the patient’s life. However, you do get used to the advantages of a practice very quickly and take them for granted: no overtime, no weekend duty, better pay.’

Sequence scintigraphy of the kidney (99mTc: MAG3) in a patient with hydropnephrosis (a) and a patient with reduced kidney function (b). Sequence scintigraphy of the kidney (a) in a female patient with, which is usually successfully treated with furosamide. (b) Patient with incidentally detected right kidney atrophy shows a horizontal curve after normal perfusion, no response to furosemide therapy – this indicates ischaemia with reduced specific gravity. In both patients, the left kidney (red curve) is normal in function and excretion.

Thyroid scintigraphy shows (a) pathological radiomucle uptake in the left lobe with suppression of the paranodular tissue and pathological uptake: these are typical features of a decompensated autonomous adenoma. Colour duplex sonography (b) shows a typical nodule with increased vascularisation at the edges, mixed echogenic, largely isoechoic. 12 months after radioiodine therapy with 1500 MBq J131 adenoma function was eliminated; uptake was identical on both sides; TSH-equivalent.

A medical graduate in 1995, Dietmar Dinter completed his radiology training in 2001 and nuclear medicine in 2009. After gaining his doctorate (1997) he focused his research on musculoskeletal and oncology imaging, with a special interest in combining morphology and functional imaging in functional MRI and PET-CT. In 2009, in addition to his work at the University of Radiologie Schwetzingen, a multi-discipline group practice specialising in radiology and nuclear medicine.
Aplio provides a comprehensive set of tools enabling you to perform an increasing number of procedures under ultrasound guidance. From automated needle enhancement to precise modality fusion, these applications allow you to navigate complex anatomy with pinpoint accuracy, improving both your clinical confidence and your productivity. Let’s talk.

Is there a simpler way to guide my interventional cases?

TOSHIBA
Leading Innovation

www.toshiba-medical.eu

www.healthcare-in-europe.com
Cerenkov luminescence merges optical imaging with nuclear medicine in a novel modality

Report: John Broksy
PET scanners are not the only way to image radiotracers. Recent work developed around a phenomenon called Cerenkov luminescence aims to bring a new modality out of preclinical development and into clinical practice.

First noted by Marie Curie, it was Soviet physicists who first described the strange blue light that occurred when charged particles travelled through water. Among the Russian group was Pavel Alekseyevich Cerenkov, who shared a Nobel Prize in 1958 for this work.

Long applied in nuclear physics, the Cerenkov effect is now being developed for use in nuclear medicine and biomedical imaging. At the ECR, on Saturday, Jan Grimm MD PhD presents the lecture 'Cerenkov: Faster Than The Speed Of Light', offering a review of this new method that promises new ways to image radiotracers and describing advances in both technological developments and clinical studies.

'Optical imaging with radiotracers is one of the very few new and novel modalities described in recent years,' said Grimm, who is an Assistant Professor at Memorial Sloan Kettering Cancer Center and Cornell University, New York. He is a Laboratory Head and also Assistant Attending Radiologist in the Radiology and Nuclear Medicine group at Memorial hospital.

'By combining optical light and radioactivity, we are merging the two fields of optical imaging and nuclear medicine, which creates a whole range of new opportunities with possibly huge advantages for patient care. This is totally new, and can be brought extremely quickly into the clinic because the tracers are all available. We just have to figure out the right clinical setting.'

In conventional optical imaging a light is projected onto the area of study to excite an injected fluorochrome. The more external light, the stronger the obtained signal – but also the scatter and reflectance of the external excitation light, degrading the sought after signal. With Cerenkov luminescence imaging the light emanates from the radiotracer within the body. It is an ultra low signal that requires total darkness and very sensitive cameras to be detected.

'We have shown that we can do this even in the clinical setting. This provides us with two types of information coming from one source – the radioactive agent. We, and other groups, are now working to create specific agents that make use of the Cerenkov light and some very neat tricks.'

Another advantage of Cerenkov luminescence imaging is the cost of the camera, which is 25% of the cost of a PET scanner. Additionally, in pre-clinical animal studies, where usually one mouse can be imaged at a time with PET, Grimm pointed out, 'we can image five mice at the same time and it takes about five minutes.'

We calculate this light is one billion times weaker than ambient light in an operating room, Grimm explained. 'To image Cerenkov light means shielding it from this billion-times stronger light, otherwise it would be like trying to see a candle held up against the sun.'

By measuring the amount of light in its path, and the amount of radioactivity from the tracer, we can determine how much light is being generated. We can determine the difference between the light actually generated and the light arriving at the detector, which allows us to calculate an absorption factor for light. Or, as we demonstrated, we can use the light and modulate it to create radiotracer-based sensors, switching Cerenkov on or off with smart tracers to provide additional information one cannot get just with radioactivity alone.

The technique is already in use in preclinical animal studies, with some very neat tricks. There are all sorts of light propagation models for radiotracers, but with Cerenkov light we can absolutely measure the radioactivity and then calculate how much light is being generated. We can determine the difference between the light actually generated and the light arriving at the detector, which allows us to calculate an absorption factor for light. Or, as we demonstrated, we can use the light and modulate it to create radiotracer-based sensors, switching Cerenkov on or off with smart tracers to provide additional information one cannot get just with radioactivity alone.

Another advantage of Cerenkov luminescence imaging is the cost of the camera, which is 25% of the cost of a PET scanner. Additionally, in pre-clinical animal studies, where usually one mouse can be imaged at a time with PET, Grimm pointed out, ‘we can image five mice at the same time and it takes about five minutes.’

The ability to capture Cerenkov luminescence remains the great challenge. Going inside the patient during endoscopic procedures shows promise because the human body serves as a natural shield for the faint blue light.
in the future, the refined procedure will facilitate more precise diagnosis because the stronger signals can visualize structures not previously detectable in the MRI. As a non-invasive procedure with excellent soft tissue contrast and no radiation exposure the only entity missing is the molecular specificity to turn MRI into the ideal procedure, the medical physicist believes.

The method is also very important for the development of active ingredients. He hopes it will help to reduce the number of animal experiments required and to assess the effectiveness of new active ingredients quickly.

Although the team’s current research focuses on oncology diagnostics Xe MRI is not limited to any particular type of disease. ‘Everything that has an identifiable molecular marker can, in principle and at sufficient concentrations, be detected with biosensors.

‘Currently the detection limit is in the nanomolar range, making these markers around 1,000 times more sensitive than conventional MRI contrast media.

‘We have developed sensors for inflammatory processes and for certain receptors on the surface of cancer cells, but we can build on this in a very flexible way,’ the physicist points out.

‘Whether or not Xe-MRI will become established in clinical routine is currently difficult to assess. The first trials on animal models are planned for this year, but Schröder cautions: ‘It’s likely to take several years before the procedure can be used in clinical routine. However, patients will also benefit indirectly from the use on animal models, which is expected to begin much sooner, through the improved development of new active ingredients and treatments.’

The specific detection of cell surface proteins by xenon MRI. The image illustrates the use of hyperpolarised xenon gas (purple) combined with xenon cryptophane cages (pale blue), which are attached to cells via antibodies. During the MRI experiment a unique radio frequency pulse (red) is used to selectively image and ‘light up’ the surface of macrophage cells.

Image: © Barth-Jan van Rossum (Leibniz-Institut für Molekulare Pharmakologie, Berlin).

Jan Grimm MD PhD, Assistant Professor at Memorial Sloan Kettering Cancer Center and Cornell University, New York

Yet, this presents a new challenge because the aperture for endoscop-ic cameras is small for the long and narrow instruments, exactly the opposite of the ideal setting for imaging Cerenkov luminescence emanating from a radiotracer.

In addition to an on-going clinical trial at Memorial Sloan Kettering Cancer Center to explore Cerenkov light in patients, 30 patients are currently being enrolled at the Guy’s and St Thomas’ NHS Trust in the United Kingdom for a pilot study to evaluate Cerenkov luminescence imaging using an analyser developed by Lightpoint Medical Limited for ex-vivo measurement of surgical margin status in breast cancer surgical specimens and the metastatic status of excised lymph nodes. Another 30 patients are being enrolled at University College Hospital London for a prospective, single-centre feasibility study testing the feasibility of 18F-choline Cerenkov luminescence imaging to measure margin status in radical prostatectomy specimens.

Research at Memorial Sloan Kettering, supported by two the United States National Institute of Health and in collaboration with Lightpoint, aims to bring Cerenkov luminescence imaging over the next five years from testing in animals to patients, ‘... and then,’ Dr Grimm predicts, ‘all the way up to an open surgery procedure.’
Seeking time-efficiency and high contrast

Black Blood Imaging may not sound helpful – but it is. The MRI specialist can work with clearer contrasts and gain greater certainty in tumour diagnosis as well as the detection of inflammatory changes in tissue.

MRI procedures can be divided into those that show blood flow as bright (bright blood) and those that show it as dark (black blood). Although the latter method has numerous advantages compared to conventional imaging it is not yet used in clinical routine, according to Dr Tobias Saam, Head of Magnetic Resonance Imaging at the Inner City branch of the Institute for Clinical Radiology at the Ludwig Maximilian University Munich.

Black-blood sequences primarily visualise the actual walls of the blood vessels rather than blood flow. These sequences are routinely used for cardiac imaging and to identify artery dissections. However, they have great potential in imaging atherosclerotic plaques and inflammatory changes in the vascular walls.

Up to recent years, black-blood sequences could only be shown in 2D. Now running these was very complex. It used to take us up to 40-50 seconds to visualise a section of the intracranial vessels of 2mm thickness. It took five to six minutes to acquire a small number of images. A new 3-D procedure, which we developed along with Philips Healthcare, now makes it possible to acquire images of the entire head, and with even better resolution, within the same space of time, so the procedure is now much more time efficient," Dr Saam explains.

The procedure visualises significantly higher number of masses

The new 3-D Black-Blood T1-TSE. Sequence does not require pre-pulse for blood suppression and is therefore particularly time-efficient. In a first study on intracranial tumour imaging Saam’s team showed that the new procedure visualises a significantly higher number of masses compared to conventional sequences. This new 3-D black-blood one Tesla sequence with variable flip angles allows us to detect more metastases than with 3-D gradient echo sequences that are normally used for tumour detection. The difference is significant. The procedure also has fewer flow artefacts than 2D-TSE sequences, Saam explains.

This is of clinical relevance: because the earlier we can detect metastases or lesions the better we can treat them.

A further effect of the new sequence: With conventionally used gradient sequences blood and lesions appear bright. The black-blood sequence shows masses/lesions brightly, but not the blood, which is shown as dark. This makes it easier to detect lesions, as there is less distraction from bright blood vessels, he adds.

Advantages for the visualisation of vascular walls

Vascularitis is a comparatively rare disease often with unspecific clinical symptoms; its early detection poses a particular challenge for all clinicians. Vasculitides are primarily based on changes in the vascular walls. Diagnostic difficulty increases because any luminal changes detected are usually unspecific and they can also manifest as a result of other diseases. Therefore, the validity of conventional imaging procedures is often limited.

So far, the gold standard for imaging large vessel vasculitis has been PET-CT. However, Saam sees considerable advantages in the new procedure. ‘Black-blood technology enables us to directly visualise the vascular wall, it’s possible to detect - at an early stage and with the help of contrast media - thickening of the walls, which can be evidence of atherosclerosis or inflammation of the vascular walls. Therefore we can use the procedure for direct imaging of inflammatory changes of intracranial as well as extracranial arteries.

Black-blood imaging can reveal central nervous system (CNS) vasculitis

The specialist cites central nervous (CNS) system vasculitis as an example: ‘We cannot visualise this with other imaging procedures. In this case, black-blood imaging is the only procedure that makes this possible. This capability has recently caused a lot of interest amongst neurologists,’ Saam points out. ‘Although this still has to be evaluated in larger studies, the procedure definitely has potential. ‘We are already having patients referred to us whose doctors are excited about it."

Tobias Saam studied medicine at Heidelberg University where he also gained a doctorate in 2010. In July 2010 he wrote his habilitation on ‘Methodical Development and Clinical Evaluation of High Resolution MRI of Atherosclerotic Plaques in the Carotid Arteries’. Since 2006, Dr Saam has worked at the Institute for Clinical Radiology at the Ludwig Maximilian University (LMU) in Munich and has headed Magnetic Resonance Imaging since 2013. His numerous honours for work on MRI use to detect atherosclerotic plaques include the Cottigle Award.

EUROPEAN HOSPITAL Vol 24 Issue 1/15

www.totoku.eu
for use in patients. Because of these practical characteristics, HP-MRSI could easily be incorporated into routine MRI examinations that include other sequences, such as T2-weighted imaging, DCE-MRI or DW-MRI. When these capabilities are also combined with an overlay of augment ed information from radiomics and radiogenomics, MRI may become an extremely powerful tool for increasing precision in all areas of cancer care, from diagnosis to treatment selection and planning, treatment monitoring and follow up. Of note, machine learning, construction of radiomics algorithms and automated pattern recognition should make it possible to develop augment ed programmes and therefore disseminate and introduce the added value of radiomics/radiogenomics in clinical practice, thus improving accuracy in oncologic imaging among radiologists who do not sub-specialise in the field. Getting to that point will need a great deal of teamwork and much greater integration of advanced biomedical informatics in clinical settings.

Hyperpolarised MR spectroscopic imaging may revolutionise the way MRI is used in cancer care. What does this revolution look like?

Hyperpolarised MR spectroscopic imaging (HP-MRSI) is a new technology that increases the MR signal 10,000–100,000-fold, and therefore enables MR imaging of nuclei other than H1 with great speed and sensitivity. Imaging after injection of a hyperpolarised agent, such as 13C-pyruvate, allows visualisation of the distribution of the agent itself as well as its downstream enzymatic products. By allowing precise identification of aberrant molecular processes, HP-MRSI should enable better treatment selection and earlier assessment of treatment response.

How do you see these advanced MRI techniques being translated into clinical routine for greater precision in medicine? Importantly, HP-MRSI allows short imaging times (seconds to minutes) that can be added to existing protocols without significantly affecting workflow, and injected HP-MRSI agents are naturally occurring substances with no inherent toxicity, making them safe

Hyperpolarised MR spectroscopic imaging (HP-MRSI) is a new technology that increases the MR signal 10,000–100,000-fold, and therefore enables MR imaging of nuclei other than H1 with great speed and sensitivity. Imaging after injection of a hyperpolarised agent, such as 13C-pyruvate, allows visualisation of the distribution of the agent itself as well as its downstream enzymatic products. By allowing precise identification of aberrant molecular processes, HP-MRSI should enable better treatment selection and earlier assessment of treatment response.

How do you see these advanced MRI techniques being translated into clinical routine for greater precision in medicine? Importantly, HP-MRSI allows short imaging times (seconds to minutes) that can be added to existing protocols without significantly affecting workflow, and injected HP-MRSI agents are naturally occurring substances with no inherent toxicity, making them safe
Could the dream ever come true?

Report: Mélisande Rouger

Every European knows how differences can boost cultural diversity and open unexpected perspectives – but, when it comes to having a homogeneous standard of care, they can become an absolute nightmare. Disparities impede this vision from becoming reality also in radiology, which is confronted with heterogeneous needs in many areas. As initiating changes takes time on the EU level, radiologists are aiming to speed things up. At this year’s ECR experts are gathering at a dedicated professional challenges session.

One of the most striking differences on the old continent is the brutal gap between salaries in medical imaging. Data collected by the European Society of Radiology (ESR) show that Swiss radiologists in training receive an annual income of 667,500 while their Romanian counterparts earn less than €3,000. (Diagram 1)

Examinations also differ from country to country because radiation doses are not always the same. For instance, the mean effective dose for chest/thorax examination is 0.20 mSv in Germany, whilst it is lower than 0.05 mSv in the UK, according to EU data. (Diagram 2)

Education is another key area of division. Most countries adopted the five-year training curriculum for radiology promoted by the ESR, but offers much less. (Diagram 2)

This gap hampers radiologists’ mobility in what should be an open space, according to the session moderator Luis Donoso-Bach, Director of the Diagnostic Imaging Department of the Hospital Clinic of the University of Barcelona, Spain. ‘If we want to promote the EU as a substantial concept, we radiologists have proper arguments to fight on this issue now more than ever.’

The ESR recently launched a Call for a European Action Plan for Medical Imaging, hoping to overcome the rigid division of responsibilities between the various EU directives that seems to impede reforms. The situation of imaging equipment is dramatically heterogeneous as well, and the density of CT and MR machines differs a lot in the EU, according to data acquired by the Organisation for Economic Co-operation and Development (OECD) in 2012. (Diagrams 4 & 5)

Least equipped of all was Hungary, with 2.8 MR and 7.7 CT scanners per million inhabitants. Romania, Bulgaria and the Czech Republic were also below European averages, as well as, perhaps more surprisingly, the UK and France. Conversely, Greece, Italy, Austria and Scandinavian countries did generally well. More importantly than the sheer number of machines is their national distribution, Boris Brkljač, professor of radiology at the Medical School University of Zagreb, Croatia, points. ‘What matters is whether the equipment age as a disaster,’ Brkljač underlines that equipment age as a key factor in imaging quality. Experts agree that the golden rule is to have 60% of equipment aged between one and five years old, and 30% between six and ten. It is also acceptable to have 10% of equipment older than ten, but, at this stage, one should think of a replacement strategy. ‘This issue is gaining momentum in Europe because equipment is rapidly ageing. According to the European Coordination Committee of the Radiological Electromedical and Healthcare IT Industry (COCIR), 60% of CT machines were up to five years old in 2008 (age profile of CT and MR equipment in Europe (2009) http://cocr.org/fileadmin/Pubs/Literature/2009/new_members_warner_k_cocr_age_profile_17_june_2009.pdf).

In 2013, their number dropped to 49.5%. That’s a considerable drop within just five years, and it means that equipment is not being renewed, probably as an impact of the financial crisis,’ Brkljač notes. ‘In Croatia public hospitals, for instance, new CT scanners only represent 11% of all CT equipment, which is an absolute disaster. That’s why the ESR is pushing this issue now more than ever.’ (link.springer.com/article/10.1007%2fs13244-014-0345-1)

The number of CT scanners aged six to ten also increased between 2008 (50.7%) and 2013 (58%). Similarly, the number of machines older than ten grew from 9.1 % in 2008 to 12.5 % in 2013. Trends are the same for MR data.

Regularly serviced, well-maintained and not over-used machines may still work well after ten years. One should avoid performing more than 15,000 CT scans annually and less than 8,000 with an MR scanner.

Regardless of economic contractions, health managers should not hesitate in investing in new equipment, because it improves imaging quality tremendously, Brkljač insists.

These examinations are highly profitable to patients and healthcare systems. In many countries, there are waiting lists and huge pressure on radiologists to image as many patients as possible.

‘Governments should ensure that hospitals have proper equipment, especially those that treat acute patients and perform complex procedures. Politicians tend to have their own policy and buy things that are not priorities. For instance, in Croatia you’ll find the best CT equipment in a rehabilitation hospital that doesn’t treat acute patients, while a few kilometres away, the structure for trauma patients has only 16-slice scanners. His conclusion: ‘I think it’s very important for radiologists to have proper arguments to fight on these issues.’

The new CCL650i2
When size matters

- 6 Megapixel
- 30inch
- 800cd/m² brightness

www.totoku.eu

Ensuring your imaging panel meets the DICOM standard

Displays benefit from auto-calibration

The standard Digital Imaging and Communications in Medicine (DICOM) enables the integration of scanners, servers, workstations, printers and network hardware from multiple manufacturers into a picture archiving and communication system (PACS). It can also sort out when, where and how to calibrate a display.

DICOM recommends regular calibration, in the centre of the display with a 10% target and 20% grey surround, using a calibrated photometer.

For auto-calibration the aim was not to compromise

When Dome (a brand of the medical visualisation technologies firm NDS Surgical Imaging) introduced the first medical imaging panel displays the company knew that auto-calibration was a key feature that would dramatically improve display quality and reliability. In 2001, Dome introduced the first auto-calibrating, liquid-crystal display system.

DICOM calibration required a photometer to measure and characterise the display’s behaviour. ‘This is the first and most critical step in the calibration process,’ Dome explains. ‘To perform auto-calibration, we knew we would have to compromise when, where or how this characterisation was done. We believed that where and how must not be compromised, because that directly affected the display characterisation. Instead, we compromised on when.’

Utmest accuracy in display characterisation

‘Dome uses true DICOM test targets and takes measurements over the full dynamic range with a high-precision, instrumentation photometer,’ the manufacturer reports. ‘This provides the most accurate characterisation of the display possible. The characterisation data is then permanently stored in the panel and is always available to be read back and used to perform an instant calibration at any time.’

Other vendors, the firm point out, ‘choose to compromise where and how the display is characterised, using a tiny front sensor instead of a calibrated photometer and measuring at the very edge of the display, rather than the centre. Due to bezel crimping and backlight non-uniformity, the edge of the panel is a poor substitute for centre measurements. Using a low-precision sensor to take measurements also yields much poorer results. ‘Not surprisingly, front sensor calibration is less accurate and more volatile, but it’s hard to know this if the same front sensor is also used for QA and for the conformance testing as well.’

Promising long-term reliability

‘For our system to work,’ Dome explains, ‘the display behaviour must be stable over time, and it is. Over a decade of research and experience has demonstrated this. A10-year-old Dome display is still as perfectly calibrated as it was the day it left the factory. The huge advantage of this approach is that the display will always be DICOM calibrated.

Dome adds that it encourages users to measure for themselves. ‘If you compare the conformance of a Dome display to any other display on the market, we are content that you’ll see our superior calibration. In fact, if you do a full 256-step conformance test, you’ll not only see our extraordinary calibration, but you can witness the volatility of front sensor based approaches.’

Details: www.ndssi.com

Based on more than 140 years of imaging expertise, Agfa HealthCare is your trusted radiology partner for the future. Today, only a small number of patients receive the lowest X-ray dose technically possible, our digital radiography upgrade program, “Fast Forward”, drives dose down with 50% and more. The radiologist is the diagnostician of the future: by providing the clinician with actionable knowledge about the patient treatment, the radiologist will be at the center of the patient’s care.

Visit us at ECR 2015
booth #103, Expo Hall A

Learn about Agfa HealthCare at
www.agfahealthcare.com
Can, should and must MRI replace mammography?

In breast cancer care each patient receives personalised, highly effective diagnosis and treatment procedures. In breast diagnostics this mainly revolves around new MRI scanning procedures that allow the quantification of biological and physiological processes on a cellular and molecular level. The talk here is of molecular MRI (mMRI), which even today makes it possible to differentiate between benign and malignant breast cancers without needing biopsies, with an impact on treatment procedures – such as minimising over-diagnosis – and of the early prediction of the therapy response of individual cancers,’ says Professor Thomas H Helbich, Vice Chairman of the University Department of Radiology in Garmisch, his lecture centred on mMRI. Various processes, such as tumour angiogenesis, cell proliferation, molecular movement and numerous metabolic changes, play a key role in the development of breast cancer. mMRI facilitates the quantification of these key processes on a cellular and subcellular level. ‘The combined use of different MRI procedures, such as contrast enhanced MRI, diffusion weighted imaging (DWI) and MR-Spectroscopy (MRS) provides first insights into the world of mMRI. This method allows us to measure multiple imaging biomarkers simultaneously and non-invasively,’ Prof. Helbich explained. It has been shown that the acquisition of these parameters enhances specificity considerably without overlooking breast cancer. Therefore, this advocates increased use of mMRI in routine breast diagnostics.

In breast diagnostics, MRI plays a vital role in monitoring cancer therapy. Depending on the chosen procedure it enables doctors to differentiate between cancers that do or do not respond to treatment shortly after it begins. This means, the professor explains, that MRI meets all the requirements for implementation in personalised medicine: Treatments that do not have the right effect can be replaced by more efficient procedures.

Women over the age of 50 are not only at higher risk of developing breast cancer but also osteoporosis. Would it not be practical to use the same method to detect both diseases early on? Definitely, decided Sectra, the Swedish company specialising in PACS and mammography systems. Based on international scientific studies and data, the company developed an algorithm that determines the risk of developing osteoporosis based on digital radiology images of the hand. The equipment used for image acquisition utilises the low-dose mammography modality.

In Munich, has been offering the special OneScreen solution by Sectra for several years, under the direction of Dr Michael Risch. Following a mammogram, the same digital radiology equipment is used to take an additional X-ray of the hand. This is sent to a trained expert at Sectra in Sweden where it enters the PACS along with the mammography image. The expert checks whether all parameters important to the evaluation of the examination have been met – the metacarpal bones of the index finger, middle finger and ring finger being the important ones – and puts the images through a specially developed programme. ‘In our practice we offer three procedures to measure bone density: Quantitative Computed Tomography (QCT), Dual-energy X-ray Absorptiometry (DXA) and digital radiology examinations with low-dose mammography. The latter are particularly suitable for early screening where there is no evidence of suspected disease as the procedure is carried out with only a very small radiation dose of just a few microsieverts,’ explains Dr Michael Risch, who has gained very good experience with the procedure with the initial selection of patients.

Apart from low radiation dose, the ease and speed of the examination particularly make the procedure highly attractive for routine medical practice: Acquiring images is a matter of seconds and the evaluation is fully automated. This is extremely convenient and allows us to offer this service, which is not covered by the statutory medical insurers only at a reasonable price – quite a bit less than one hundred euros,’ he points out. ‘If, based on the Sectra evaluation, osteoporosis, i.e. early stage osteoporosis, is diagnosed, further examinations are carried out for quantification and then treatment is recommended.

Global data comparison Sectra OneScreen already allows significant conclusions about bone density, according to Maria Bölin, General Manager and head of Section’s European Division. ‘Our system measures more than 1,000 points on the metacarpal bones of the three middle fingers. The system evaluates the volume as well as the curvature of the bones and the data is then used to determine the
Further information available on: www.eizo.de

The biggest is its versatility. And its size.

RadiForce™ RX850.

The RX850 displays images from multiple imaging processes simultaneously on its 31.1”, 8-megapixel LCD screen, making it highly flexible and completely versatile. The RX850 is available with an optional anti-reflective (AR) optical coating, which prevents glare without diffusing the light from the screen.

- Suitable for mammography in accordance with DIN 6868-157
- Flexible hanging protocol due to high resolution
- Fine dot pitch for sharper detail
- Low heat output keeps room temperature pleasantly low
- Anti-reflective screen for improved ergonomic performance
- 5 year warranty

Further information available on: www.eizo.de
Where some dey the commoditisation of radiology, Gabriel Krestin MD, sees an opportunity to redefine the profession, for radiologists to rise up from basement reading rooms to consult as equals with other medical specialists in multi-disciplinary conferences focused on patient care. 'If we are going to think about the future, we should not be looking in a rear view mirror. We need to be open to the changing environment,' he said in this interview with European Hospital editor John Brooke.

A past-president of the European Society of Radiology, Krestin will address the European Congress of Radiology on 5th March in a session dedicated to the future of radiology with his presentation entitled 'Quo Vadis the Radiology Profession: A Pragmatic Approach.'

Professor Krestin spoke from his offices in Rotterdam, the Netherlands, where he chairs the Department of Radiology at the Erasmus Medical Centre.

EH: What is your assessment of the state of radiology today?

In this moment, when medicine is becoming more personalised for the patient, we are challenged to deliver greater precision. This definitely changes the face of radiology and says exactly what radiologists want to be expert consultants.

EH: Is the resistance to structured reporting due to the way it pushes against a tradition in radiology of interpreting images from an examination?

That is one of the reasons. A second reason is that it narrows the freedom to be more subjective; or to emphasise aspects you find of interest and tend to report more often. Structuring reports obliges a radiologist to report with only those elements of the examination that are objective. This forces us to use more objective characteristics. It does not always need to be a number, but it does need to be a classification that is objective. This is what is meant by 'enlarged'.

EH: Do you see the role of radiologists diminished?

Definitely not! We still have leverage, perhaps even more, because we will be taken more seriously. While there are measurements, and even if they become standardised, these measurements stay within radiology. Two other issues that come in here: first, that the more an examination contains objective, measurable markers, the more it approaches other diagnostic specialties, such as pathology or laboratory medicine. A lab report, for example, delivers a long list of numbers of biomarkers measured in the blood or urine. My prediction, which is perhaps exaggerated and says exactly what radiologists would fear, is that our reports will look similar to lab reports, long columns of numbers, saying things like 'At position N° 27 the number is 78'. I don’t really believe our reports will ever look like that. Yet it is the direction we should be moving toward. My colleagues who are thinking in this way would love to have measures that are validated, consistent in delivering the same number no matter what technology is used. Like the creatinine value in blood, our measurements of, let’s say the plaque volume in the coronary artery, should always be consistent and delivered as the same number.

EH: We need to be open to the changing environment. What I am saying is that, with his presentation entitled 'Quo Vadis the Radiology Profession: A Pragmatic Approach.'

Gabriel Krestin MD, works at the Department of Radiology, Erasmus Medical Centre Rotterdam, The Netherlands.

THE REVOLUTION IN 3D IMAGING

NEW 3D C-ARM +++
ZIEHM VISION RFD 3D
30 cm x 30 cm flat-panel +++ 25 kW generator +++ intraoperative 2D & 3D imaging +++ 180° image information +++
www.ziehm.com/3D

ecr 2015, expo c, booth 312
ziehm imaging

The C-arm company.
On show at ECR 2015

First unveiled at RSNA 2014 last November, Carestream’s Touch Ultrasound System is on show for the first time in Europe at this year’s ECR.

‘This innovative ultrasound platform delivers a unique all-touch control panel, integrated GPU processing power and smart transducer technology coupled with a single-board system design,’ the manufacturer reports. ‘This creates a highly reliable product with advanced imaging capabilities, a compact footprint and a modern user interface. The sleek, all-touch control panel blends the best of both worlds by combining the speed and flexibility of a soft user interface with the tactile feedback of traditional keys. Etched marking for primary controls assists the user with easily locating key functions without looking away from the image display monitor.’

The company is also demonstrating notable new features for its healthcare IT platforms, which manage, store and share patient data and medical imaging exams. ‘Carestream’s new Clinical Collaboration Platform can boost collaboration among clinicians; break down walls between ancillary departments, sites and networks; and provide physicians with a single view of critical patient records and information,’ the company explains. ‘The Clinical Collaboration Platform enables healthcare providers to capture, archive, manage and distribute clinical data such as images, videos, photos and reports related to the patient from different ancillary departments, such as endoscopy and dermatology.

‘This creates a patient-centric clinical record that complements the electronic health record. Capturing structured data will also deliver greater clinical insight with interactive reports where a single click of a hyperlink takes physicians to the actual data.’

The firm suggests that this Web-enabled platform can be used for telemedicine, to provide specialist input in remote areas. ‘The platform also offers a secure digital patient portal that allows patients to download, view, store and share their own medical imaging studies with physicians and specialists,’ the report adds.

‘Carestream is also highlighting new features in its radiology portfolio to help diagnose and treat a wide range of conditions, including: A compact new Vita Flex CR system that provides excellent image quality and can process images while set on a floor, table or other flat surface. This affordable platform can meet the diverse needs of imaging centres, private practices and smaller hospitals, as well as orthopaedic, veterinary and chiropractic providers,’ Carestream points out.

New tools for digital breast tomosynthesis designed to enhance the early breast cancer detection and treatment.

The latest version of the company’s radiology information system that enables the importation of a patient’s clinical history for referring physicians can have a more comprehensive file on which to base diagnostic and treatment decisions.

Carestream’s newest cardiology image management platform enables text messages or e-mail notifications to be sent to a physician when a patient has a critical condition, and a dashboard that provides data to assist with diagnosis of a current examination.

Finally, there’s a new premium laser imager that produces images from CT, MR, digital mammography and other imaging modalities on radiographic film.

Details: www.carestream.com/ecr.
Seeking the best systems

When the Medical Radiological Institute (MRI) at the private Bethanien Hospital in Zurich and the local hospital in Årø, Denmark, needed new fluoroscopy and radiography equipment, they investigated quality, functionality, service quality and cost. Among systems examined was Shimadzu’s Sonialvision G4, which has been completely revised, with innovations in all areas, including dose reduction and enhanced image quality, simplified processes and improved patient comfort. ‘The premium application software offers the most recent improvements for diagnostic imaging. It supports useful applications, such as multi-slice imaging, slot radiography as well as DSA & real-time and motion-tolerant RSM-DSA, which are all options to extend its functionality,’ Shimadzu explains.

Multi-purpose needs in Switzerland

Dr Thomas Vollrath, board certified radiologist said that the MRI Bethanien needed to increase capacity with optimum use of existing space. Fujifilm Switzerland presented the institute with a multi-purpose examination room containing Shimadzu’s high-performance R/T.

The robust X-ray table allows bariatric studies with a patient load up to 318 kg in horizontal position system Sonialvision G4, combined with a ceiling-mounted 3-D X-ray tube support, a bucky stand and an additional mobile FPD. Up to this, the institute had different systems in two rooms. The Sonialvision G4 now combines the former applications for fluoroscopy and radiography in one small examination room of only 27 m².

‘This offers us the great advantage of patients no longer having to be moved, which is very comfortable for them,’ notes Franziska Bissig, supervising radiographer. ‘The mobile FPD is compatible with our second X-ray room and offers additional flexibility for further emergency and bedside examinations.’

Equipped with the largest available FPD at 43 x 43 cm, the X-ray table of the Sonialvision G4 offers large, long-view examinations of the patient from head to toe, so that the MRE Bethanien can also perform digital slot radiography. Very soon, slot radiography provides high-resolution, homogenous and dose-reduced long-view imaging (e.g. full leg and full spine imaging). ‘We have been able to improve in all aspects,’ Dr Vollrath concludes. ‘The Shimadzu system is simply newer, more modern and more manageable.’

Bissig confirms that the image quality and intuitive operation shortening work processes soon convinced staff of its value. ‘The combination of X-ray tube and detector covering the examination area more than 200 cm longitudinally without the tabletop having to be positioned is also welcome. ‘In our small examination room we can thus avoid any possible collissions, for example with infusion stands,’ Bissig adds. ‘It’s also very helpful that the patient mattress can be fixed to the top lateral mounting stands,’ Bissig adds. ‘It’s also very helpful that the patient mattress can be fixed quickly and easily.’

Roughly 50 km long and up to 8 km wide, Ærø is one of Denmark’s Baltic Sea islands. The local hospital recently installed the first Sonialvision G4 equipment in that country; therefore the hospital will be used as a reference when new customers want to see how it operates.

An X-ray image presented in two minutes

For Ole Gilberg, head of the X-ray department, the new equipment has much to offer: ‘Earlier, it took 10 minutes to produce an image. With the new equipment we can present an X-ray image in two minutes, which means a lot when we have trauma patients from a car accident, for instance.’

In addition, the robust X-ray table can be lowered to 47 cm, thus giving easier access for children, older patients or patients with limited mobility. It also allows bariatric studies with a patient load up to 318 kg in horizontal position.

Another plus: ‘The fully flat table top and built-in cable system of the X-ray table is a good improvement in terms of hygiene and workload,’ Gilberg adds.

Details: www.shimadzu-medical.eu

A FEW SHIMADZU MI

1896 - One year after Dr Roentgen discovered X-rays, Shimadzu succeeded in producing an X-ray image
1909 - Shimadzu developed the first medical X-ray device made in Japan. Ever since, Shimadzu has pioneered medical X-ray devices
1934 - With the development of Japan’s first spectrophotograph, Shimadzu advanced into the field of analytical instruments
1936 - The company began to manufacture aircraft equipment
1951 - Shimadzu began to increase the number of exports to global markets
1954 - Development of Japan’s first gas chromatograph
1960 - Shimadzu developed a vacuum quartz furnace, which served as a major stimulus to the steel industry
1961 - Shimadzu created a remote-
Introducing the Dome S6c widescreen 6MP diagnostic display — a new benchmark in optical clarity. With an ultra-thin bezel, fanless cooling technology, and sleek, lightweight design, the Dome S6c brings you next generation engineering that’s worth looking into.

- Long-life LED backlight
- Factory calibrated for life
- 30” widescreen viewing
- Ultra-slim bezel
- Fanless cooling
- Lightweight design

See what you’ve been missing
How secure are your data?

A powerful new level of performance to meet all your ultrasound needs

Discover the Aixplorer® ultrasound system

• An UltraFast™ Platform to bring you true technological advancement
• Real-time, quantitative, ShearWave™ Elastography on all transducers and across a variety of clinical applications
• The 60 second exam - fast, reproducible, cost effective

Mobile IT in radiology

The appetite for mobile information technology (IT) seems insatiable. Boosted by the sales of the iPhone 6 Plus, Apple generated a record $18 billion profit in 2015’s first quarter alone. Social media use is exploding, and dedicated professional platforms, such as Figure 1, a sort of Instagram for doctors, increasingly emerge. These changes are affecting our daily lives, and this is also true for radiologists.

While tablets and smart phones create unprecedented opportunities for radiologists to connect with their colleagues and patients, mobile IT also raises a number of questions, especially regarding its safety. A panel of experts are tackling these issues in a dedicated refresher course during the European Congress of Radiology. More and more radiologists succumb to the charms of mobile devices. Apps like Osirix enable cases to be reviewed at home, prepare slides, give a conference, and, increasingly, to communicate with other physicians. Mobile tools may also improve communication with the patient, and a number of institutions are already enabling patients to access their images online, or to discuss their record with physicians during teleconferences.

However, in the absence of a clear regulation on the topic, a hefty question has been on everyone’s lips for some time: with mobile IT, how safe is our data?

Hospitals are increasingly a target for hackers. A large number of cases were reported in which cardiac devices, or parameters of a CT examination, had been manipulated at a distance (ref: http://www.wired.com/2014/04/hospital-equipment-vulnerable/).

Data security is simply insuffi cient in healthcare facilities, according to Erik Ranschaert, radiologist at the Jeroen Bosch Ziekenhuis teaching Hospital in ’s-Hertogenbosch, the Netherlands, a speaker during the course.

‘Hospitals will have to change their security protection. Hackers are targeting systems that store personal information in electronic medical records,’ he said. ‘In the United States alone, there has been a 600% increase in attacks on hospitals in 2014, according to a report published by security firm Websense (ref: http://www.cbc.com/id/702092324).

With mobile devices, patient data are being transported outside the hospital, so the risk of leaking data is multiplied exponentially. There is currently no firewall to protect data on a tablet - just a login and a password. One can certainly remotely cancel access to an iPad, but there is no 100% certified protection for data. What happens if they are stolen?

‘Imagery you are treating Barack Obama and you have, on your tab- let, the images of his colonoscopy that you performed a day earlier. How, suppose the results show he has cancer, and suppose you lose your tablet during a flight. What happens next? You risk having these images exposed to the whole world before even discussing them with your patient,’ said Emanuella Neri, associate professor of radiology at the University of Pisa, Italy, and Chair of the ECR course.

To make matters worse, most hospital managers are still unaware of these risks. They also do not realise that data can be lost or damaged during their transmission from one device to another, according to Neri. Stakes are high because valuable personal information can be used for commercial reasons, knowing which medication a patient uses offers a unique opportunity to advertise products - just like Facebook already does using your own data. The medical legal loophole concerning the issue only exacerbates the risks.

‘I suspect there will be a great business around data selling. It may even be the biggest business of our century. I expect there will soon be a policy to protect data security. However, I don’t think there will be one regarding privacy so soon. How we will manage these issues in the future is a big issue, because our data are already everywhere,’ Neri pointed out.

The European Union is addressing the issue but its resolutions may come too late. The Horizon 2020 research programme plans to offer solutions to security and privacy by 2020.

In the meantime, hospitals can defend their systems by making sure tablets and smartphones are used in a protected environment. Raising the level of protection of an IT system against hackers is of course mandatory, but it is not the only way, Ranschaert explained. ‘One could also develop solutions to deliver access only after identification, or force data to remain within safe containers and make sure it cannot be downloaded or accessible by private apps – e.g. for image or photo sharing.

Furthermore, one should be able to remotely wipe the data, and the hospital’s policy should be adapted to usage of social media within the facilities. For instance, Breda hospital in the Netherlands forbids everyone to take pictures in the hospital with mobile devices,’ he said.

‘Training personnel and radiologists on how to use mobile devices and social media safely is key to improving safety. Part of healthcare will soon become digital, so physicians and providers should get ready for the switch.

‘We shouldn’t try to avoid it; the ostrich strategy will not pay off. We have to think of how we can use mobile IT for the mutual benefit of our patients and ourselves. There are advantages in using these tools to facilitate our services and improve education but,’ Ranschaert concluded, ‘we have to be aware of the risks, too.’
Rebuilding Russian radiology

Facing challenges common to any manager, Russian radiologists must also confront a funding crisis, systemic dysfunctions, self-referring patients, and head-hunters chasing staff, John Brosky reports.

'We are not reinventing the bicycle here in Russia,' said Sergey Morozov M.D. Ph.D., M.P.H., radiologist and where would be familiar with the experience of restructuring imaging services for the nation's health care system, he added. Thanks to a recent modernisation programme, together with the new radiology systems installed in even smaller community hospitals across the country, he said, 'We have taken on the challenge as a community hospitals across the country. The equipment we have is the same, the standards for operating the equipment are the same, the protocols are very similar,' stated Prof. Morozov, who is Deputy CEO at the European Medical Centre in Moscow, and a member of the Management in Radiology (MIR) Subcommittee of the European Society of Radiology (ESR). 'As a system solution.'

Currently there is a widening gap between the level of digitisation and IT capabilities between public and private hospitals, which are moving faster to introduce PACS and hospital information systems (HIS). 'They can make purchasing and installation more straightforward, they are more transparent in their operation, and they can assure financing because they are structured as businesses,' said Prof. Morozov.

'With public hospitals this all can become more complicated,' he acknowledged. 'It can sometimes be difficult for public hospitals to understand why they need things like PACS or IT, and HIS, and to understand why they need to find the funding for these projects.' The good news, he said, is that there is increasingly a top-down support for IT and PACS as the heads of hospital administration see an advantage to prepare detailed business plans and financial analysis predicting cash flows. It is a recognition of radiology as a business; by the state hospitals as well as the private hospitals.

'Making it a tough situation even more difficult, he said, is that financing has collapsed for the national healthcare management that equipped hospitals and clinics. Unfortunately much of the equipment was often provided without service contracts, only guarantees for one year after installation. In addition, not all equipment was installed according to the proper specifications. This has left many hospitals without equipment service. Clearly the lesson has been learned that we cannot just buy a piece of equipment without thinking about service from the beginning; and on-going financing; and proper staffing and training.

In these areas we also have some challenges that are specific to the Russian market,' he said. 'A huge difference here is that many patients refer themselves for radiology exams. They do not come from a specialist or even a general practitioner. They go to Google Doctor and come to us saying they would like an MRI. I had one patient who, when I asked her what her health issue was, she answered she suffered T2 hyperintense lesions in the brain. Because there is not an absolute requirement that a physician must order a scan or radiological exam we have a major policy issue and we need to define patient flows to radiology. Another issue is that the percentage of patients who pay out of their own pockets for health services is rapidly expanding. Patients don’t always go to the appropriate public hospital service, but instead search for better diagnosis and treatment among private clinics. ‘Money has become the major driver of healthcare.'

Radiologists as managers

Today, in Russia, radiology services are perceived as a source of revenue for hospitals. Radiologists have become the stars of the healthcare system. Consequently, qualified radiologists are requesting high salaries, head-hunters are after them, making it difficult to find good radiologists and trained technicians – critically, experienced radiologists who can act as managers to run a department efficiently.

In addition to my hospital work, I teach at the chair of radiology at Sechenov Moscow Medical University. Five years ago we would have 10 to 15 residents each year; now we have between 50 and 60. Young doctors who wish to enter radiology must find a programme themselves, yet the program for training has not kept pace, so that hospitals and state universities cannot produce enough courses.

This is creating a business of post-doctoral medical education in Russia where we see private companies providing specialised training courses with experienced doctors. These private companies have radiologists to train young radiologists. Combined with a fee-for-service model of payment, this drives costs higher and higher until we see that Russia’s healthcare spending per patient is constantly increasing. With understaffed state hospitals providing patients with poor service and a lower quality of treatment and diagnosis, those who can afford it prefer to go to a private hospital.

'The good news is that, over the past three years, Moscow Healthcare has acquired about 150 CT and 70 MR scanners. They are now acquiring a regional PACS system from Agfa Healthcare to connect all these scanners to create a centralised Centre of Excellence that can offer second readings for other medical centres. Here we are seeing a concerted state effort in a policy to provide better standards for radiology in imaging and interpretation. The Centre for Excellence in Moscow is proving a driver for increasing quality. It creates an opportunity to enhance the education and training system. Radiologists learn a second opinion is not a punishment but a systematic review to identify discrepancies. In this way people learn how to avoid any mistakes, whether in equipment use or interpretation.'

Sergey Morozov has headed the Radiodiagnosis Service of the European Medical Centre in Moscow since 2003. An honours graduate (2002) from the Sechenov Moscow Medical Academy, he specialised in General Medicine and gained his Medical Sciences PhD for his thesis on functional MRI in 2004 and another Medical Sciences doctorate for his thesis on radiodiagnostics in orthopaedics in 2010. Dr Morozov completed multiple residencies on X-ray diagnostics in the USA (Memorial Sloan-Kettering Cancer Center, New York) and Italy (La Sapienza).

is the case elsewhere, once you receive the equipment, you need to adopt standards, train your team to understand why they need things like PACS or IT, and HIS, and to understand why they need to find the funding for these projects. The good news, he said, is that there is increasingly a top-down support for IT and PACS as the heads of hospital administration see an advantage to prepare detailed business plans and financial analysis predicting cash flows. It is a recognition of radiology as a business; by the state hospitals as well as the private hospitals.

Facing challenges common to any manager, Russian radiologists must also confront a funding crisis, systemic dysfunctions, self-referring patients, and head-hunters chasing staff, John Brosky reports.

'We are not reinventing the bicycle here in Russia,' said Sergey Morozov M.D. Ph.D., M.P.H., radiologist and where would be familiar with the experience of restructuring imaging services for the nation's health care system, he added. Thanks to a recent modernisation programme, together with the new radiology systems installed in even smaller community hospitals across the country, the next level of challenge, he said, is the case elsewhere, once you receive the equipment, you need to adopt standards, train your team to understand why they need things like PACS or IT, and HIS, and to understand why they need to find the funding for these projects. The good news, he said, is that there is increasingly a top-down support for IT and PACS as the heads of hospital administration see an advantage to prepare detailed business plans and financial analysis predicting cash flows. It is a recognition of radiology as a business; by the state hospitals as well as the private hospitals.

Facility upgrade to improve patient comfort with Quiet Suite.

With MAGNETOM Amira® you can:
• Increase patient comfort with Quiet Suite
• Gain diagnostic value with FREEZET®
• Streamline operations with 10-min exams
• Save 30% energy® with Eco-Power

www.siemens.com/amira

Answers of life.
A portable colour Doppler for POC.

M9 brings maximum mobility

For medical ultrasound it’s quick, easy and portable – and so popular with Professor Christoph Dietrich, chief of Medical Department 2 at Caritas Hospital, Bad Mergentheim, one of the first physicians worldwide to test the M9 in clinical routine. ‘The compact M9dim colour Doppler system is about the same size as a notebook computer. The imaging suite comes to the patient,’ the specialist reports.

Located on the Tauber River in the quaint town of Bad Mergentheim, Medical Clinic Two focuses on hematology/oncology, palliative medicine, gastroenterology and herpetic infections, as well as enhanced transmission and metabolic diseases and has an excellent reputation for specialised and innovative endoscopic and ultrasound techniques.

Dr Dietrich uses the M9 ultrasound system for any standard diagnostic exam, from head to toe, and simply opens up M9’s high-resolution exams. Liver, duodenum (DUO) and right renal artery (RAB) are also marked.

An artefactual lymph node (AR) situated between hepatic portal vein (PA) and inferior vena cava (VC) illustrates the M9’s high-resolution. Liver, duodenum (DUO) and right renal artery (RAB) are also marked. Contrast-enhanced ultrasound (CEUS) visualises bleeding and abscesses and allows characterisation of the surrounding liver tissue. Note the enhanced margin between the markers.

A peripatic lymph node (LR) situated between hepatic portal vein (PA) and inferior vena cava (VC) illustrates the M9’s high-resolution. Liver, duodenum (DUO) and right renal artery (RAB) are also marked.

For CEUS the M9 offers another advanced Mindray technology: Ultra Wideband Nonlinear Contrast Imaging. This transmission uses second harmonic as well as nonlinear signals, which results in excellent contrast-to-tissue specificity.

Professor Dietrich is convinced that ultrasound, while still essential in trauma and haematology/oncology, discipines, including gastroenterology and haematology/oncology, answered with an unambiguous yes or no. Professor Dietrich explains. ‘By systematically imaging the entire abdomen the physician can tell, in less than a minute, whether free fluid is present or not.’

For abdominal contrast-enhanced ultrasound (CEUS) the professor relies on the M9’s image quality. ‘With the M9 you can quickly detect or exclude a splenic abscess or liver rupture. Two to three minutes after contrast administration you can see blood flow.’

A colour Doppler for POC.

Feel the pulse of the medical products industry

HTDC

Hong Kong International Medical Devices and Supplies Fair
18-20 May 2015
Hong Kong Convention and Exhibition Centre

Some Sponsorship for Hong Kong buyers

Current President of the European Federation of Societies for Ultrasound in Medicine and Biology (EFSUMB)

Christoph F Dietrich has been senior consultant at Caritas Hospital in Bad Mergentheim, Germany, since 2002. A German National Academic Foundation scholarship enabled studies at Hanover’s Medical University. Additionally, in 1988 he passed the US-American FGSMEs exam. From 1997 he specialised in internal medicine and in 1999 received his habilitation. Professor Dietrich is also a certified specialist in several other disciplines, including gastroenterology and haematology/oncology.

Jean-Baptiste Kepple, European Hospital, Thünenallee 45, 45133 Essen, Germany.

Moira Mizzi.
Ultrasound system sharpens paediatric hepatic imaging

High quality B-mode with advanced functions makes UltraFast the “go-to” device for paediatricians

Ask about UltraFast ultrasound and you might expect a technical answer explaining why the ultrasound is faster. However, for Stéphanie Franchi-Abella MD, fast means just fast, an ultra-quick acquisition she can take of a squirming, agitated new-born in the blink of an eye: “These babies are small and breathing rapidly, the organs are moving fast in the image and it’s sometimes difficult to record Pulsed Wave Spectral Doppler in their vessels that are small.”

UltraFast facilitates Doppler acquisitions. It only takes two seconds to record all Doppler data in an image and you can obtain all conventional Pulsed Wave Spectral Doppler measurements retrospectively and assess arterial and venous patency in these vessels recorded in the image. This is interesting in young patients because one acquisition time being sufficient to assess arterial and vein patency.

“In liver disorders it is very interesting to show the transient inversion of peripheral portal blood flow that we would not be able to see with a Doppler. For us, this can be a sign of portal hypertension,” explained Dr Franchi-Abella, who is a paediatric radiologist at Bichére Hospital in Paris, the leading tertiary centre for paediatric liver disease and liver transplantation in France. At this year’s ECR she is presenting a lecture on “The Benefits of Using UltraFast Ultrasound Imaging in Paediatric Patients” during the SuperSonic Imagine Satellite Symposium (4 March).

In 2012, her clinic was first equipped with an Aixplorer ultrasound platform from SuperSonic and the following year the group presented at JFR (the French meeting of Radiology and ESPR European Congress of Paediatric Radiology) preliminary findings from a study of 98 children, half of whom were healthy while the others had liver fibrosis. The study compared the metrics reported by the ShearWave Elastography function on the Aixplorer with histological staging of biopsies from the same tissue. In 90% of cases the ShearWave Elastography (SWE) matched the liver fibrosis staging obtained from biopsy.

An article reporting these preliminary findings is now in press with the journal Radiology. Meanwhile these results caught the interest of the French ministry for health, which is establishing SWE as a non-invasive tool for the diagnosis of liver fibrosis. ‘I would not want to promote any findings ahead of the definitive results, but, what is clear, and what we can say, is that the preliminary findings are very encouraging. There may be a possibility that we can better decide when to perform biopsy in certain indications,’ she said.

While the primary endpoint of establishing a correlation between histology reports and SWE remains the same, the method for analysing the histological samples calls for an additional and more objective assessment with software analysis,” Dr Franchi-Abella explained. “We expect to be able to complete this study next year.”

In her ECR symposium presentation, the expert said she will discuss specific applications of Aixplorer, both for its advanced UltraFast functions and elastography, as well as for its B-mode, ‘although I plan to show examples of how we apply the Ultrafast ultrasound in clinical practice, notably for liver disorders,’ she said. ‘We have had high-end ultrasound systems with complicated keyboards and so many buttons everywhere that there is nothing natural about learning how to use them. The Aixplorer has proven to be so much simpler to use that most radiologists in our service have taken it up easily and rapidly. It quickly became the preferred system for everyone in our clinic. It is the “go-to” ultrasound system because of the high-quality imaging.

The multi-task Aixplorer can cover routine clinical assessments of morphology, whether for a neo-natal brain, or the hips, and notably for the digestive anatomy, she added. ‘We have improved our diagnostic performance in some disorders since using the Aixplorer. For example in biliary atresia – a progressive biliary fibrosis leading to biliary obstruction in newborns – the presence of a microcyst (<0.5 mm) next to the portal bifurcation is quasi pathognomonic of this disorder. The quality of the SL10-2 probe improved the detection of such microcysts a lot, and that is helpful in assessing this pathology. For this diagnosis we don’t want to lose any time: Babies who have surgery before 40 days have a better outcome with a greater chance to resolve the pathology and avoid liver transplantation, so it is essential to make a diagnosis as early and as quickly as possible.

‘The fact that we have advanced functions for measuring liver stiffness, or to better see micro-ascites, helps us to understand certain pathologies better. For children receiving liver transplants, the first month can be complicated with many things that could happen (infection, rejection, vascular disorders and so on).’ Sometimes the ability to link a morphological image with elastometrics helps to understand what is happening better and make a much more precise diagnosis. I’ll be sharing examples from such cases of children with a liver transplant in my ECR presentation.’

Liver Fibrosis of a few months old child measured simultaneously in kPa (4.7 kPa & 5.1 kPa) and m/s (1.2 cm/s & 1.3 m/s). No fibrosis corresponding to a F0 Metavir score

UltraFast Doppler displays multiple spectrums in a single image in this neonatal liver with cholestasis. Full display achieved in a single acquisition

Liver Fibrosis of a few months old child measured simultaneously in kPa (4.7 kPa & 5.1 kPa) and m/s (1.2 cm/s & 1.3 m/s). No fibrosis corresponding to a F0 Metavir score

Liver Fibrosis of a few months old child measured simultaneously in kPa (4.7 kPa & 5.1 kPa) and m/s (1.2 cm/s & 1.3 m/s). No fibrosis corresponding to a F0 Metavir score

Liver Fibrosis of a few months old child measured simultaneously in kPa (4.7 kPa & 5.1 kPa) and m/s (1.2 cm/s & 1.3 m/s). No fibrosis corresponding to a F0 Metavir score

Liver Fibrosis of a few months old child measured simultaneously in kPa (4.7 kPa & 5.1 kPa) and m/s (1.2 cm/s & 1.3 m/s). No fibrosis corresponding to a F0 Metavir score

Liver Fibrosis of a few months old child measured simultaneously in kPa (4.7 kPa & 5.1 kPa) and m/s (1.2 cm/s & 1.3 m/s). No fibrosis corresponding to a F0 Metavir score

Liver Fibrosis of a few months old child measured simultaneously in kPa (4.7 kPa & 5.1 kPa) and m/s (1.2 cm/s & 1.3 m/s). No fibrosis corresponding to a F0 Metavir score

Liver Fibrosis of a few months old child measured simultaneously in kPa (4.7 kPa & 5.1 kPa) and m/s (1.2 cm/s & 1.3 m/s). No fibrosis corresponding to a F0 Metavir score

Liver Fibrosis of a few months old child measured simultaneously in kPa (4.7 kPa & 5.1 kPa) and m/s (1.2 cm/s & 1.3 m/s). No fibrosis corresponding to a F0 Metavir score

Liver Fibrosis of a few months old child measured simultaneously in kPa (4.7 kPa & 5.1 kPa) and m/s (1.2 cm/s & 1.3 m/s). No fibrosis corresponding to a F0 Metavir score
Value in an open platform

As Hitachi deploys its new generation of Oasis 1.2-T MRI scanner throughout Europe, our Madrid correspondent asked Dr Manuela Joqueru Moya about her experiences with the new scanner over the past few months.

Report: Mélisande Rouger

Musculoskeletal and neuro-radiologist Dr Moya works at San Carlos Hospital, a public facility, and at the Advanced Surgery Centre of Virgen de la Paloma Hospital, a private institution where an Oasis 1.2-T MRI Scanner was recently installed. Open from 8am to 10pm her department scans 20 to 24 patients a day, mainly for ambulatory care.

Dr Moya: 'A high percentage of the patients suffer from claustrophobia, and a significant number of patients prefer to be examined in an open-platform, probably because they feel more comfortable here than in a confined scanner. The Oasis platform offers high field imaging, so we mainly perform MSK and nervous system examinations. Most of our patients come from traumatology and neurology. We also perform abdomen and mammography examinations, mainly in patients with claustrophobia. We rarely image obese patients; this population is still low in our country.'

Why did the Centre choose Hitachi’s equipment?

Oasis is the first Oasis system installed at a private facility in Madrid. Only one public hospital had previously been equipped in the capital. This means we can now also offer this service to patients coming from the private sector, who represent a large number of patients in Spain.'

What is specifically good about working with Oasis?

'Oasis is useful for any study that requires high field imaging. The wide open-platform enables us to perform high field studies in patients with claustrophobia who otherwise would never be able to benefit from, for instance, specific abdomen, liver or whole-body MR examinations, unless they are sedated.'

'The open-platform is very convenient. I have been working with the system since last September, and I find it very good not only for patients with claustrophobia but also for children. Young patients who undergo an examination in a confined bore tend to move because they are nervous. If one of their parents can sit and chat with them during the examination, it helps them relax. Putting them at ease definitely reduces the risk of repeated scans, decreases scan time and provides higher quality diagnostic images.'

'Oasis 1.2-T features susceptibility weighted imaging (SWI), spectroscopy and perfusion, which all play an important role in neurological exams. For MSK examinations, the open platform architecture helps to acquire an image radically. Many patients will voluntarily or involuntarily move during an examination. The flow and motion compensation technique of radial acquisition significantly improves image quality and expedites interpretation without having to sedate patients.'

What could be changed in the future?

'I am sure how Oasis is going to develop further, but I think technology will soon enable the magnet power to increase to 1.5 or 2-T, which would definitely improve the offer for open high-field equipment. However, for the moment, I believe developments will rather focus on short bore MR equipment.'

Cardiac CT scanner drops radiation dose

Further big plus: Even patients with AF and high heart rates can be scanned.

A British Society of Cardiac Imaging (BSCI) survey has confirmed that Toshiba’s Aquilion One scanner not only delivers exceptionally low radiation doses for cardiac CT, but also widens the scope of diagnostics in Cardiac CT because even patients with conditions eliminating them from a CT exam before this machine arrived can now be scanned.

An incredible 40% lower radiation dose ‘This data is possibly the most powerful I can show about the Aquilion One with the PureVision detector,’ said Russell Bull MD, Consultant Radiologist at the Royal Bournemouth Hospital, Dorset, United Kingdom, where the study data was collected. Over a one-month period at the hospital, an unselected patient population was surveyed. The group included all patients as well as those with atrial fibrillation and high body mass index.

The radiation dose of around 1mSv for an unselected population is amongst the lowest ever recorded for cardiac CT. ‘I would have been happy with 20% reduction in radiation dose compared to the previous survey,’ Dr Bull said, when presenting the BSCI findings. ‘In fact, there was a 40% reduction in dose. This is extraordinary as the Aquilion One was already a low dose scanner in the previous survey.’

Better imaging with high contrast

Adaptive Birefractive Dose Reduction in 3D (AIDR 3D) is integrated in the Aquilion Vision. This not only minimises image noise, thereby enabling radiologists to lower the radiation dose, but also assures high diagnostic quality images.

Combined with the wide detector array of 16 cm, this CT scanner enables volumetric scanning, where entire organs can be captured with perfect temporal uniformity and completely free from 2-axis misregistration at a rotation speed of 0.2-75 seconds. As a result Dr Bull said, ‘The image quality is actually much better, which has to do with the combination of the PureVision detector and the AIDR 3D processing. We are seeing better images for 40% less radiation dose. With Aquilion One we can scan patients we wouldn’t even consider scanning on a conventional scanner.’

4-D imaging and more

With this Toshiba CT scanner time can be added as the fourth dimension paving the way for high-quality dynamic volume applications, or 4-D dynamic volume imaging, the manufacturer reports. ‘Each individual set of data, acquired in a dynamic volume, shows an exact moment in time, or the exact phase of contrast enhancement.’

Dr Bull also added that, the ability to change the table speed on the fly with Variable Helical Pitch (vHP) is unique to Toshiba. This, for example, makes it easier for the technician to do a TAVI scan.
Cardiologists gain MRI training

Seeing a substantially increasing importance of the cardiac MRI procedure, cardiologists have developed a specialist cardiac MRI training programme for their colleagues, Bettina Döbereiner reports.

Over the last two years technical developments in cardiac MRI have undoubtedly had a major impact on cardiovascular medicine. To acknowledge this development, at least to some extent, the German Cardiac Society (DGK) has developed a specialist Cardio-MRI training programme. This January, Professor Hugo Katus, Head of the DGK’s Working Group for Training and Advanced Training, introduced the new curriculum at the annual DGK press conference in Berlin.

These days, cardiovascular medicine would be inconceivable without cardiac MRI and, according to Prof. Katus, who is also Medical Director of the Clinic for Cardiology, Angiology and Pulmonology at the University Hospital Heidelberg, its importance will continue to grow.

Therefore, Katus and his DGK colleagues aim to ensure that this imaging procedure has a firm place in out- and in-patient cardiovascular medicine.

Unified standards

As a first step, the society’s cardiologists have developed an additional qualification in Cardio-MRI, which members of their profession can attain. The initiators hope that the curriculum (V. Hombach et al., Curriculum Cardiac Magnetic Resonance Tomography (CMR), in: Cardiology 2014, 8:451-451) developed by the DGK Working Group will set the first, unified standards for well-conceived MRI training (education CMR curriculum) across Germany.

Advanced training in this field is closely aligned with existing international curricula, such as those developed by the European Society of Cardiology (ESC) and Continuing on page 24

Practical innovation inspired by your daily needs

Medical minds think alike

www.mindray.com

Visit us at Expo B, Booth # 203

At Mindray, innovation starts with communication. Through regular, dynamic interaction with medical practitioners around the world and the integrated strength of 11 global R&D centers, we develop keen insight into how our devices can better support your day-to-day clinical requirements; secure one for new breakthroughs in relevant medical technology.

www.healthcare-in-europe.com
Safer head and neck imaging

‘The engineering evolution of the NewTom range has delivered an ultra-modern, ultra-technological, ultra-competitive device – the most complete CBCT, the device manufacturer reports.

‘NewTom VG evo performs 3-D imaging, panoramic imaging, telediagnostic and 2-D sequential imaging. The device introduces a new image chain, which includes features that increase standard CBCT performances, such as an enlarged flat panel sensor, with an improved signal/noise ratio and a rotating anode generator with a 0.3 mm focal spot.’

With 51 scan modes, NewTom VG evo adapts to specific needs of different clinical applications. The FOV range goes from 5x5 cm to 24x19cm, recommended for Head & Neck applications. NewTom also introduces SHARP 2-D technology, enabling the VG evo to generate a complete set of 2-D images (AP, PA and LL cephalometric images), the manufacturer explains, adding: ‘It also features the CanX function, a dynamic sequence of 2-D images for analysing swallowing, salivary ducts, TMJ with contrast and flexion and extension of spine.’

Dose reduction

To protect users, the device uses pulsed emission that activates the X-ray source only when needed and a total exposure for a standard exam takes only 1.8 seconds. Further dose reduction is achieved by using VG evo’s new Eco Scan mode, available for all FOV, combined with SafeBeam technology.

Details: www.newtom.it