Promising substitutes for human hearts

Fully implantable mechanical hearts bring hope to 121,000 heart failure patients who will never receive a human heart transplant.

Report: John Broaky

It is a world-first. In December 2013, a fully artificial heart was implanted in a 75-year-old French man, who is continuing to be doing very, very well, according to surgeons.

This year three more French patients with end-stage heart failure are expected to receive mechanical heart replacements as part of this first-in-man trial for safety and feasibility. If all goes well, a second group of 20 patients from Germany, Belgium, Poland, Slovenia, and Saudi Arabia will receive hearts in an expanded clinical trial that could lead to CE approval in 2015.

It is estimated that each year 125,000 end-stage patients in the United States and Europe are awaiting a heart transplant, where only 4,000 transplants will be performed.

We have heard about heart failure patients receiving heart-assist devices that serve as a bridge-to-transplantation, keeping them in life while waiting for a human heart to become available. Yet this was the first patient to have his heart completely replaced by a mechanical device that is a destination therapy. If all goes well, that is first French patient will leave the hospital wearing only a lithium-ion battery in a shoulder harness.

This is completely new, a fully implantable artificial heart and not a ventricle assist device: explained Marcello Conviti, CEO of Carmat, the company that developed and manufactures the device.

'Ventricle assist devices are used as a bridge-to-transplant, and they work well. However, these devices need an external air compressor that drives the membrane to push the blood. There are also tubes exiting the patient. With the Carmat heart only a wire exits the body to supply electricity and give information about device performance. All the other parts are inside the patient,’ he explained in an interview with European Hospital.

A heart from outer space

Developed by a team of engineers from EADS, the Carmat heart weighs 900 grams, nearly three times more than an average healthy human heart. 'What is significant is the level of innovation in our approach,' he explained.

All the parts that are in contact with the blood are made of biocompatible materials, the same as have been used in artificial heart valves. This should reduce dramatically the level of antithrombotic drugs required because the risk of thrombosis is extremely low, compared to ventricle assist devices.

'Our device is also auto-regulating with embedded electronics, so it’s going to deliver output in line with a patient's needs, from two to nine litres per minute. There are sensors to optimise the machine's performance for cardiac output according to the patient position and activities.

'The other devices in the market have pumps that deliver a fixed level of output. This makes a very big difference because it affects not only the quality of life of the patient but the level of precision will maintain a level of health for the patient. 'The Carmat heart is also silent so the patient does not have noise around him,' Marcello Conviti added. 'With heart-assist devices, the patient has a big compressor pumping air in and out with mechanical valves that you can hear clicking. '

The service life of the device is estimated to be five years. 'We have done bench testing that shows device performance goes well beyond five years,' he explained. ‘But time will tell. In bench testing it was very difficult to simulate beyond 10 years.’

Exceeding all expectations: valves run beyond 10 years

Carpentier heart valves, invented by Alain Carpentier MD, a founder of Carmat and the driving force behind the artificial heart, were expected to fail after two years, because all the previous generations of artificial heart valves had failed due to calcification; but, after five years, the Carpenter valve was still going, performing very well,’ Marcello Conviti pointed out. 'Then these valves performed beyond 10 years. Currently there is a large series of Carpenter biological valves, and they are still performing after 30 years. The cost for the heart device cost and implantation procedure is between €140,000 to €180,000, roughly equivalent to reimbursement levels for a heart transplant, a key to the design requirements set down by Dr Carpentier. ‘What good is there in developing a device if it is too costly to be used for everybody,’ he told the French Sunday newspaper Le Journal du Dimanche.

Carmat’s CEO said he is prudent in his estimations of the value of the business potential for providing hearts off an assembly line. ‘We do not provide any guidance at this point, except to say that we hope to start commercial activities in 2015, to be in the USA in 2018, and to reach full capacity with revenues of $1.5 billion in 2020 – something like that. We are talking about a company that has only one product for the moment, and which has not yet sold anything, yet.’
Diabetes: The value of fermentation

Yoghurt consumption reduces type 2 risk

Raise your intake of low-fat fermented dairy products, including yoghurt, fromage frais and low-fat cottage cheese. A further finding was that consuming yoghurt, compared with no consumption, can do that, but also that higher consumption also reduced the relative risk of diabetes by 24% overall.

Leads to scientist Dr Nita Forouhi, from the Medical Research Council (MRC) Epidemiology Unit at the University of Cambridge, said: ‘The research highlights that specific foods may have an important role in the development of type 2 diabetes, and are relevant for public health messages.’

Yoghurt is an important source of high quality protein, vitamins and minerals. However, they are also a source of saturated fat, which dietary guidelines currently advise people not to consume in high quantities, instead recommending they replace them with lower fat options.

Thus the researchers could examine diabetes risk in relation to total dairy products consumption, as well as types of individual dairy products. The consumption of total dairy, total high-fat dairy or total low-fat dairy was not associated with new-onset diabetes once important factors like healthier lifestyles, education, obesity levels, other eating habits and total calorie intake were taken into account.

Total yoghurt and cheese intakes were also not associated with diabetes risk. In contrast, the researchers found, those with the highest consumption of low-fat fermented dairy products (such as yoghurt, fromage frais and low-fat cottage cheese) were 24% less likely to develop type 2 diabetes over the 11 years of follow-up with 3,502 randomly selected study participants. Thus the researchers could examine diabetes risk in relation to total dairy products consumption, as well as types of individual dairy products. The consumption of total dairy, total high-fat dairy or total low-fat dairy was not associated with new-onset diabetes once important factors like healthier lifestyles, education, obesity levels, other eating habits and total calorie intake were taken into account.

Total high-fat dairy or total low-fat dairy was not associated with new-onset diabetes once important factors like healthier lifestyles, education, obesity levels, other eating habits and total calorie intake were taken into account.

The researchers said that yoghurt intake could be good for our health. For example, they found that yoghurt consumption was associated with a decreased risk of developing diabetes. This risk reduction was observed among individuals who consumed an average of four and a half standard 125g pots of yoghurt per week. The same approach was used to examine the association for low-fat fermented dairy products, such as low-fat non-ripened cheeses e.g. fromage frais and low-fat cottage cheese.

The findings are very reassuring to have messages about the transition from retail to hospital, and then also continue regarding a potential ‘conflict of interest’, since Sir Stuart is on the advisory board of the international private equity group Bridgehouse, a major shareholder of the private health provider Care UK; additionally, the firm is reported to be lined up to take over the running of NHS hospitals in the first 11 trusts targeted by those special measures last July are ‘turning around’ and, Jeremy Hunt pointed out, ‘critical problems at those hospitals have been resolved’.

The authors emphasise that, while the evidence points to a role for eating dairy products causes the reduced diabetes risk, dairy products may be associated with a lower risk of developing type 2 diabetes. The authors emphasise that, while the evidence points to a role for eating dairy products causes the reduced diabetes risk, dairy products may be associated with a lower risk of developing type 2 diabetes.
The NHS fast-track leadership programme
A 10-month programme organised by the NHS Leadership Academy is to include executive education by Harvard Kennedy School, an independent armament, and nine months delivery of a transformational change programme in a top NHS Trust under a chief executive mentor. More than 1,300 non-NHS employees have applied for the 50 places on this fast-track leadership programme, which will begin in June 2014.

Critics have been quick to query the ability of anyone whose basic knowledge lies in retail. As Columnist Yvonne Roberts queries the Observer: ‘What could the Rose possibly import from M&S to Britain’s best-loved, albeit permanently reforming, supermarket? And what sort of expert knowledge, constantly criticised and battered institutions?’

Sir Stuart is aware of: ‘Clearly the NHS is a very different institution from M&S, but leadership, motivation, strategy and creating a culture where people are empowered to do things differently are crucial to the success of any organisation and I’m looking forward to helping in any way I can.’

Among the leading NHS hospital CEOs is Sir David Dalton, at Salford Royal Hospital, and he has also been appointed to look at how best practice can be shared and how the successful managers can get involved with the poorest hospital performers, as has been shown in the case of appointing those proved to be ‘super heads’ to focus on poorly performing schools and turn them towards success.

Sir Stuart and Sir David could make a ‘very powerful’ combination, declared Rob Webster, CEO of the NHS Confederation, which represents hospital trusts. Many people in this country believe that appointing top entrepreneurs from the business world (e.g. popularly Sir Richard Branson) to run the country could prove far more successful than having it run by career politicians.

After all, it is not unusual for the government to turn to such ‘immortals’ for specific guidance. We have yet to see whether the management of very sick people, knowledgeable professional medics and highly complex institutions where emergency situations can occur extremely rapidly, can indeed equate to the organisation of retail outlets, no matter how large.

Inevitably, Sir Stuart’s report will be much discussed at the end of this year.

Statistics: Where is there safety in numbers?

Doctors slam claims of 18,800 preventable hospital deaths in just one EU country, Bettina Dibereiner reports

The Hospital Report on Patient Safety, recently published by major German statutory health insurer AOK–Bundesverband, has provoked indignation in physicians and hospitals alike. Above all, they question the report’s estimate from 2011 alleging that 18,800 patients died in German hospitals following preventable adverse events.

Since 1993 the insurance group’s scientific institute (Wido) has published an annual Hospital Report to focus on a specific topic. In the current issue, Wido took an in-depth look at patient safety, with experts from research and clinical practice discussing the problem from different angles. The 500-page report was barely off the press when the reaction set in.

Max Geraedts found himself in the line of fire: it was he, as professor for healthcare systems research at Witten/Herdecke University, who had made the calculations, based on the data of a systematic review of the international research literature from 2006, updated in 2007, which indicated that five to ten percent of all cases in a hospital are accompanied by adverse events, two to four percent by preventable adverse events and one percent of all medical interventions are burdened with a medical error.

The data further allow the conclusion that one per million patients treated in a hospital suffers a fatal error. In its 2007 report the government’s Expert Panel on Health calculated that, based on these data, 17,000 patients died due to preventable adverse events. Applying these data to 2011 figures, 18,800 is the figure Professor Geraedts arrived at.

In a statement, Professor Frank Ulrich Montrey, President of the German Medical Association, criticised the calculation in that all healthcare systems are lumped together with no regard for individual differences: ‘The AOK Hospital Report ignores the fact that the majority of healthcare systems internationally is weakened by waiting lists, limited access to in-patient care and rationing of medical services and pharmaceuticals.’

Georg Baumn, Managing Director of DKG, objected to old data being applied to 2011. Particularly during the last decade, he emphasised, the significance of clinical risk management has increased immensely and a host of risk-reducing measures, such as quality circles, operating theatre checklists and morbidity and mortality conferences, as well as the Critical Incident Reporting System were introduced. Therefore the older data used for the report, he believes, are invalid.

Both the physicians’ and hospitals’ association lambasted the health insurer and its research institute Wido as publishers of the Hospital Report for creating the impression that they have reliable data – which, they claim, do not exist. Indeed Germany maintains neither a medical error registry nor any other data pool on medical errors. Alfred Danzer, President of DKG, went beyond criticism by demanding AOK apologies for its misleading assertion that 18,800 patients per year die from preventable adverse events.

‘It is unfortunate that the fight about the figures – which only offer supporting evidence on patient safety – dominates discussion. The important and complex issue of patient safety is thus reduced to numbers, veiling the fact that there is an urgent need for action. Beyond the commotion, all actors agree that a lot can and needs to be done to improve patient safety in the country’s hospitals and that every single death caused by a preventable adverse event is a death too many.’

www.kimes.kr

2014
13-16. March

K!ES 20
30th Korea International Medical & Equipment Show

ORGANIZERS
Korea E & Ex Inc. / KMDIA / KMDIA

CONTACT
Korea E & Ex Inc.
Tel. +82-2-551-0102 Fax. +82-2-551-0103 Email. kimes@kimes.kr

SPONSORS

www.european-hospital.com

www.kimes.kr

3
Among the NASDAQ-listed ‘Henry Schein Cares’ business it is one of the largest suppliers in this field, worldwide, we can produce in large quantities. We have very strong partners in all the markets, both in terms of complement with our own-brand portfolio. Strong partnerships, which we have established and nurtured with many companies for decades, are an important pillar of our business. We also have a separate, annual catalogue for care products. Our customers in the care sector are large group providers of care services whom we’ve supplied with our products and services for many years. This will continue to be a growth market.

Could the firm help hospitals and surgeries that have insufficient capital resources for investments? In cooperation with external finance providers, the Mayo Clinic is active in three regions – Arizona, Florida and Minnesota. The supply chain function is part of the entire value chain in our organisation, which particularly includes the Mayo Clinic, which is owned by Joseph Dudas, who heads a staff of around 500 people in Mayo's supply chain unit, which structures itself from sourcing of contracts, and buying to delivering a product for a customer. At Mayo, most US hospitals, costs generated by supplies make up roughly 20 percent of a hospital's expenditure.
ECR 2014 Congress President Prof. Valentin Sinitsyn is Chief of Radiology at the Federal Centre of Medicine and Rehabilitation in Moscow

ECR 2014 Congress Issue: Russia

Russia: Scanners plentiful but radiologists too scant

However, investments in equipment and advanced training are attracting medical students, John Brosky reports

‘Going back 20 years we had problems with access to high-end technologies for radiology. CT, MRI and PET scanners were quite rare,’ sighed Valentin Sinitsyn MD. Then, he laughed. ‘Now suddenly we have the opposite problem with more and more new technologies and a shortage of radiologists qualified to operate all this equipment.’

Over the past decade, he explained, the Russian Ministry of Health has invested heavily in the acquisition of high-end radiology platforms, significantly including information systems to process, store and share images. ‘In absolute numbers, we can claim to have between 14,000 or 15,000 radiologists, but most have been trained in basic examinations for X-ray or else specialised in just CT or MRI. There simply wasn’t a need for more advanced training,’ he said.

As a result, the Russian Society of Radiology has endorsed the European Training Curriculum for Radiology developed by the European Society of Radiology (ESR) as a basis for a national training programme.

Chief of Radiology at the Federal Centre of Medicine and Rehabilitation, Dr Sinitsyn is also a member of the ESR Executive Council and, over the past year, served as the Chairman of the Congress Committee responsible for the scientific and educational programme. He has given special attention to organising a special session on ‘ESR meets Russia,’ that will feature some of his country’s most prominent radiologists, two cultural interludes and a panel discussion.

On the theme, Future developments in Russian radiology: which path to take? ‘I would not want to predict what the panelists will decide; but my own greatest hope is that we will encourage and support this great interest that young people are showing in radiology,’ said Dr Sinitsyn, who is also a professor and the Head of the Radiology Course at Moscow State University. ‘Radiology has become very attractive for Russian medical students. They find it exciting with all the high technology, computerised processes, information technologies, 3D imaging and functional imaging. It is a field that is developing very fast, which also appeals to them.’

‘Most of these students speak a high level of English, which is essential as so much data and information is available for them everywhere in English-language journals and, of course, on the internet. To the point where increasingly we can offer radiology courses for Russian students in English,’ Prof. Sinitsyn explained.

Among the students and residents he teaches he said he is impressed by their drive and enthusiasm to be successful, well-trained and knowledgeable professionals. Attending international congresses has convinced them they also need to demonstrate an expertise by presenting results from their work.

‘I am very pleased that we have seen an increase this year of more than 60% in papers and posters submitted to the European Congress from Russia. My country is now among the leading contributors of scientific work this year and I believe it is a general trend and that we can expect it will be sustained with future congresses.

There remain significant challenges for Russia with its uneven expansion of capabilities in radiology, he added. ‘While we have seen an acceleration in the development of digital networks and PACS, many hospitals have boldly gone ahead purchasing these expensive systems without building the required infrastructure or assuring they have a sufficient number of workstations. Often they cannot see further than acquiring stand-alone systems. On the other hand, we have quite successful programmes at a national level that are fully equipped and fully-digital with regional radiology networks and teleradiology. It becomes a question of cultural change, of finding the appropriate approach for creating these services.’

‘Service for the new equipment is another, quite complicated issue,’ he added. ‘On the one hand, there will stop a scanner operation, of course, but repair or replacement take quite long times. There remain significant challenges for Russia with its uneven expansion of capabilities in radiology, he added. ‘While we have seen an acceleration in the development of digital networks and PACS, many hospitals have boldly gone ahead purchasing these expensive systems without building the required infrastructure or assuring they have a sufficient number of workstations. Often they cannot see further than acquiring stand-alone systems. On the other hand, we have quite successful programmes at a national level that are fully equipped and fully-digital with regional radiology networks and teleradiology. It becomes a question of cultural change, of finding the appropriate approach for creating these services.’

‘Service for the new equipment is another, quite complicated issue,’ he added. ‘On the one hand, there will stop a scanner operation, of course, but repair or replacement take quite long times. There remain significant challenges for Russia with its uneven expansion of capabilities in radiology, he added. ‘While we have seen an acceleration in the development of digital networks and PACS, many hospitals have boldly gone ahead purchasing these expensive systems without building the required infrastructure or assuring they have a sufficient number of workstations. Often they cannot see further than acquiring stand-alone systems. On the other hand, we have quite successful programmes at a national level that are fully equipped and fully-digital with regional radiology networks and teleradiology. It becomes a question of cultural change, of finding the appropriate approach for creating these services.’

‘Service for the new equipment is another, quite complicated issue,’ he added. ‘On the one hand, there will stop a scanner operation, of course, but repair or replacement take quite long times.'
A time to celebrate greater child protection

The Image Gently campaign enters 7th year

Report: Cynthia E. Keen

The words ‘Image Gently’ are synonymous with protecting children from unnecessary or excessive exposure to X-rays. A grass-roots campaign started by a handful of US paediatric radiologists and medical physicists who were deeply concerned about the radiation doses paediatric patients were receiving from CT scans has become a highly effective, on-going worldwide message and movement to make diagnostic imaging safer for children.

The Alliance for Radiation Safety in Paediatric Imaging consists of over 80 member societies representing more than 800,000 medical imaging professionals. On 1st January 2014, 28,298 medical professionals had taken the Image Gently pledge to ‘child size’ radiation doses, keep radiation doses as low as reasonably achievable (ALARA) to obtain a diagnostic quality image, and to substitute non- ionising exams, such as ultrasound and MRI, whenever possible.

The Image Gently campaign promotes radiation protection for children through an all-volunteer social marketing campaign that just keeps gathering momentum, according to the Alliance’s chairperson, Dr Marilyn Goske, a paediatric radiologist at the Cincinnati Children’s Hospital Medical Center, Ohio, USA. Dr Goske attributes Image Gently’s success to global agreement by medical professionals, allied health groups, regulatory and advice organisations, government agencies and medical device manufacturers because this is the right thing to do. Its messages are also directed to parents, whom it works hard to educate. Its authoritative website (www.imagengently.org) is a steadily expanding resource for medical professionals and parents alike.

Since its inception, the Alliance has sponsored awareness campaigns in CT, nuclear medicine, diagnostic fluoroscopy, interventional radiology and, most recently, digital radiography. ‘Young radiographers don’t think about over-exposure, and dose creep has been a concern ever since the introduction of computed radiography in the early 1990’s,’ Dr Goske pointed out. Like all of the campaigns, the Back to Basics campaign includes quality improvement tools and a 10-step approach to performing digital radiography, which emphasises that the body thickness of a child, not age, height or weight, should determine radiation dose.

The European Society of Paediatric Radiology has been very active in promoting harmonisation of radiation dose guidelines, especially for the fluoroscopy, interventional radiology, and nuclear medicine campaign. Efforts are underway to translate educational materials into each of the world’s major languages. Safer and better imaging for children needing radiology exams is also a factor of training. This gained a big boost with the establishment in May 2011 of the World Federation of Paediatric Imaging (WFPI), created to coordinate the work of paediatric radiology societies throughout the world and create a strong unified voice on the global practice of child imaging. The Federation’s founding members included the regional societies of Europe, North America, Central and South America, and Asia/Oceana. Formed shortly thereafter, an African society soon joined WFPI, as did several societies representing individual countries.

WFPI’s founding president and chair, Dr Ines Boechat – head of paediatric imaging at UCLA Mattel Children’s Hospital and professor of radiology and paediatrics at the University of California-Los Angeles (UCLA) – has gathered leading radiologists to focus on improving patient care and the patient’s experience. ‘They are right and at the same time wrong,’ said Dr Frija. ‘It is true that with iterative reconstruction we have diminished dose exposure considerably, from 50% to 70%. Yet they are wrong because today the scientific view held in esteem around the world, the linear no-threshold model, says that even an infinitesimal dose of radiation has a potential risk.

‘This is no more than a hypothesis that has never been proven. Yet, even if some believe that low dose exposure does not carry a risk, they are wrong to dismiss the patients’ concerns. The key goal is to assure the patient who may be worried. Rather than disputing this hypothesis, we are going to frame the radioprotection discussion as a matter of benefit and risk for an exam,’ he said.

Radiologists, he pointed out, need to know how to explain to patients that the best protocols possible and best equipment, are being used in the best interest of the patient.

During this year’s ECR opening ceremony, Dr Frija will officially introduce the EuroSafe Imaging campaign that he has personally taken up as the Centrepiece of his ESR presidency. The fullness of the campaign will be presented in the special session ‘Dealing with Challenges of Radiation Protection’. Key themes are promoting appropriate use in radiological imaging, maintaining radiation doses either in diagnostic reference levels and using the As Low As Reasonably Achievable (ALARA) principle to further reduce radiation doses while maintaining the image quality needed for clinical purposes. All stakeholders will participate, including the European Commission and the WHO. ‘We will hear from American colleagues who organised the successful radioprotection campaigns Image Gently and Image Wisely so that we can profit from their experiences,’ Dr Frija added.

An exhibition area is also dedicated to the EuroSafe Imaging Campaign, featuring posters prepared by stakeholders. ESR has been involved as either a coordinator or partner in a number of EC projects centred on radiation protection concerns, including the European Medical ALARA Network (EMAN) focused on optimisation, the Referral Guidelines project addressing the implementation of the Medical Exposure Directive’s requirements on justification, or appropriateness, Medical Radiation Protection Education and Training (MEDRAPED) and very recently a project to establish diagnostic reference levels for paediatric imaging.

‘We’ve convinced all our partners, including the EC, that beyond developing guidelines we can enhance the adoption of those guidelines through a programme called Clinical Decision Support with IT tools,’ said Dr Frija.

Are you safe?

ESR has also influenced the orientation of clinical audits that will become mandatory under the Medical Devices Directive, the directorate of the European Atomic Energy Community (Euratom) and the Medical Exposure Directive of the European Atomic Energy Community (Euratom) and the Medical Exposure Directive of the European Atomic Energy Community (Euratom) and the Medical Exposure Directive of the European Atomic Energy Community (Euratom). Session 1

Radiologist Denis Remedios (UK), co-author of the Royal College of Radiology guideline for the United Kingdom of Great Britain, will report on clinical decision support (CDS) based on lengthy experience at MGH. Llus Donoso (Spain), vice-president of the European Society of Radiology (ESR) and Chair of Radiology at the University Hospital
The diagnosis is in the details.

Addressing the radiology department’s need for high-quality, high-productivity image capture systems, we offer a rich portfolio of DR solutions empowered by MUSICA image processing software, from mobile to affordable and fully automated, high-performance DR rooms.

Insight. Delivered.

Learn about Agfa HealthCare at www.agfahealthcare.com
Two things that radiologists resist – structured reporting and (computer-assisted) quantification – are the very things that Gabriel Krestin believes are essential to advance diagnosis in the brave new world of omic-medicine that is emerging. This is the start of the Human Genome project. Now that we can increasingly sequence the whole genome in large numbers of cases and controls, people try to determine whether there is anything changed within a gene that is associated with a certain disease or a certain phenotype. Multiple cases have been found where such genes correlate or are associated with people who develop Alzheimer’s disease or other clinical diseases. So the start of omic-genomics, usually use for this correlation between genomics and specific imaging signs. Imaging genomics is, more or less, the same definition and I think imaging genomics is the better term.

Where does radiology play a determining role in the universe of omics?

A very exciting area that is not yet fully explored is imaging genomics, the genetic signature of those tumours. We can find a correlation between that expressed gene and the enhancement pattern of that tumour. This will tell us if the tumour is hypoxic, or not. These are very relevant findings that have an implication on the possibilities to treat that tumour. Because we know that tumours that are hypoxic will not respond to certain chemotherapies or radiotherapies.

Radiology has a 100-year tradition of interpreting images and reporting findings. Will this change that?

Absolutely. We are moving towards applying precision medicine in imaging. I’m absolutely convinced this is the way forward, and if we don’t want to be completely sidelined and made obsolete as radiologists, we have to move toward precision. Precision is measuring, knowing the cost is not always about the potential of linking genomic mutations with imaging phenotypes, the quantification of reporting it will require, and his views on changes necessary in both radiology and society.

EH: What is this new world of radiogenomics?

Gabriel Krestin: Radiogenomics has become an important term that refers to the potential of linking genomic mutations with imaging phenotypes, whether there are any imaging markers that are associated with associated with people who develop Alzheimer’s disease or specific types of cancer. Multiple cases have been found where such genes correlate or are associated with people who develop Alzheimer’s disease or other clinical diseases. So the start of omic-genomics, usually use for this correlation between genomics and specific imaging signs. Imaging genomics is, more or less, the same definition and I think imaging genomics is the better term.

This is no longer a dream but a reality?

This is absolutely a reality. These types of studies have been exponentially increasing in recent years since the start of the Human Genome project. Now that we can increasingly sequence the whole genome in large numbers of cases and controls, people try to determine whether there is anything changed within a gene that is associated with a certain disease or a certain phenotype. Multiple cases have been found where such genes correlate or are associated with people who develop Alzheimer’s disease or other clinical diseases. So the start of omic-genomics, usually use for this correlation between genomics and specific imaging signs. Imaging genomics is, more or less, the same definition and I think imaging genomics is the better term.

With eavesdropping into secure systems brought sharply into focus as a result of revelations of monitoring by the US National Security Agency (NSA), a leading communication expert has warned that many hospitals across Europe need to take further steps to better protect the sensitive data stored on their healthcare IT systems.

While acknowledging that some healthcare establishments have implemented measures to ensure eavesdroppers cannot access their systems, Torbjörn Kronander is concerned that others are still exposed to intrusion from outsiders. As head of the Swedish firm Sectra, which develops and sells products and services for medical imaging IT and security, Kronander/8 says how hospitals often do not realise how easy it is to eavesdrop into secure computer systems or archives and how common it is. However, he is sensing a change in attitude among healthcare organisations and an increased demand for his company’s knowledge and expertise in IT security in a medical IT setting, coupled with greater awareness of the risks of data breach and the importance of a security component for hospital archives.

Challenges still remain, he notes, in implementing the need for security into daily practice and ensuring the medical community understands the need for effective data security. Another issue for Europe’s health sector is the lack of uniformity in secure systems adoption in hospitals. The risk of data breach and eavesdropping, he explained, was vividly highlighted by the case of American computer specialist Edward Snowden, where the former NSA contractor revealed details of global surveillance by the NSA.

Torbjörn Kronander maintains that it is not difficult to keep internal and opportunists hackers out of hospital systems but stressed that many need to take practical steps if they want to remain IT secure: ‘They need an awareness and knowledge of data security at IT level and also understand how to make the system secure so that no one can go into the system and change data. Changing data is the worst thing you can do in a hospital; it’s worse than losing data or eavesdropping on the data.’

He cited an example of a case a decade ago in a European country: a doctor who had made a clinical error went into an image archive and changed the picture he had used for the procedure. ‘Security comes at different levels and you can do a lot with software but in the initial phase it is a systems approach; how you look at security in hospital, support it, and then how you enforce it. No chain is stronger than its weakest link, so all systems must be secured,’ he added. ‘For a hospital, the first need is to understand that there is a problem and then adopt a symptomatic specification on a hospital level on how this should be tackled, so that you don’t solve security in different ways in different places.’

Security that pays off

While secure systems cost money and take up some staff and time commitment, the cost is not always as high as hospitals fear. ‘Security costs money but a breach of security costs even more money. It is like insurance; insurance costs money but if you do not have insurance and something happens it will be even more expensive.’

Sectra, which has evolved over the past 35 years into an international company with more than 500 employees across 12 countries, is now seeing interest in securing the medical imaging infrastructure and PACS the Company sells in its other division. The company underpins its success with long-term and close collaboration with customers and standing their daily life and routines and combining this with leading-edge IT security.

Security awareness, he pointed out, remains generally low in small- and medium-sized hospitals, and there is no consistent way of solving security issues within them. He also advises hospitals to demand
Art or science?

What people would like in medicine, that you know what is going on, you know what to expect, you know what will cost, and that, wherever you go, you will get the same type of care and cure without huge qualitative differences.

This is an ideal for the future. Yes, for many years there will continue to be differences, with better doctors than others, because so much is still not explained, and so much is still based on intuition and not purely on science.

Yet, the more we move toward finding the molecular basis of disease and the causes of disease, I hope we will move closer to the garage situation where you know exactly what you get, and whether it can be fixed or it can’t.

Who is going to pay for all this?

For the time being it’s interplay between the scientists and the organisations that are willing to fund these types of studies, such as national governments and European grants. Probably the pharmaceutical industry should be increasingly interested in this area because, through imaging genomics, they will get additional markers that can help in drug development.

Still, I have a different question. I never understood why the increasing cost of healthcare, in an industry that is growing much faster than other industries, is a problem. What’s bad about increasing the economy around healthcare? If 20% of a country’s population is employed in some way related to healthcare, why are we not willing to pay, or to allow that a significant part of the GDP goes into this industry? What is bad about that?

People want and need health. They are probably willing to pay for health, or the system should be willing to pay for health. I don’t see a huge problem. I have spoken with important economists about this and never received a good explanation as to why we want to limit the healthcare industry. We need a change in the mind-set.

Protection of hospital information systems (HIS) must adopt top security

Certain levels of security specification from a vendor when they buy a PACS, RIS, or HIS system and also adopt the information security management systems standard ISO27001 for security of data, which is used by vendors and security companies such as Sectra.

Kronander warned that these days, obviously no information can be perfectly safe, but added that with Sectra, hospitals can “make their IT systems immensely more difficult to eavesdrop and listen into.”

The challenges in a transforming healthcare system drive our innovations.

Siemens is looking forward to welcoming you at ECR 2014. We will proudly present innovations created with your daily challenges in mind. Innovations offering new possibilities for more accurate diagnoses and more targeted therapies that support you to focus on your patients.

Innovations with efficient workflows and high overall productivity and quality that support you in providing better access to healthcare in your community. You therefore gain peace of mind when facing a transforming healthcare system.

To find out more please visit www.siemens.com/ecr and our booth at Extension Expo A, Entrance Level, Booth No. 11.
Spectral imaging offers morphological plus functional and molecular data

Dual energy brings more to the eye

How does spectral – or dual energy – imaging work? Very similar to red and green lights in black-and-white photography. A black-and-white camera provides information on the intensity of the photographed objects: an object that is black under red light is actually green. Different photon energies generate differently coloured light. Spectral imaging applies the same knowledge to X-rays in order to increase the information content in the images,” says Professor Thorsten Johnson who until recently headed the CT department of the University Hospital Munich at Grosshadern. With his team he shaped the development and the clinical application of dual energy imaging.

While in spectral imaging the X-ray image is created in conventional greyscale, but using different photon energies, the system manufacturers follow different approaches to achieve their results.

Dual energy: More information but same radiation dose

Siemens places two CTs with two X-ray tubes in one device. These radiation beams can be operated at different kV levels, they fire from different angles but from the same position on the axis simultaneously on two detectors. We reconstruct images from both projections; Prof. Johnson explains, and in a second step we analyse the images as to their spectral characteristics. In the data set we can identify different substances, particularly heavy elements such as iodine, xenon or calcium. Most – the most successful – applications use contrast agents.

Top: Xenon ventilation shows a defect in the right upper lobe
Centre: Spectral imaging confirms the kidney stone (in red) to be a uric acid stone, which does not require surgery
Bottom: Iodine image of the lung shows a triangular defect indicating a small embolism

Siemens, ‘NewTom 5G is the unrivalled benchmark’

The device features the proprietary ECOBeam technology that provides information on metabolic activities that indicate tumour progress.

With electricity shared by two tubes, valuable additional information is generated using normal dose. Thus high image quality can be achieved with a neutral ‘radiation footprint’.

Different technological approaches

Another approach – used, for example, by GE – is the so-called rapid KV switching technology (RKS), however, which, as Professor Johnson points out, is not entirely dose-neutral. Philips, another major player in diagnostic imaging, offers a system with a detector equipped with two scintillator layers of different sensitivity. The crystals on these layers convert the incoming X-rays into visible light that in turn is detected by optical sensors.

Applications

Spectral imaging is suited for a wide range of applications. In angiography the specific and quantitative detection of iodine contrast agent allows the complete removal of the background, including bone structures. This provides a much better overview of the region of interest and significantly facilitates diagnosis. In peripheral artery occlusive disease the vascular structure is much easier to see and evaluate. Prof. Johnson explains. In terms of 3-D reconstruction, projection without bones accelerates the assessment of intracranial aneurysms or arteriovenous malformations. In addition, with faster speed is the essence. During his term as Head of the CT Department at the Grosshadern University Hospital, his team has looked at more than 30% of all protocols were geared towards dual energy.

The competition: MRI

For Prof. Johnson, MRI is clearly a competitor of spectral imaging. However, patient cohorts and the resource situation are completely different for the two modalities. While MRI scanners are rarely quickly available, and imaging takes quite some time, dual energy CT scanners are not yet widely used – also because in Germany, for example, the statutory health insurers do not reimburse the additional costs of spectral imaging.

Looking ahead

Where is spectral imaging development heading? According to Prof. Johnson, one trend is increased performance of the X-ray tubes: voltage changes in 10 kV steps, higher maximum, higher density filters. ‘This new generation of dual energy systems provides even better contrast – and thus more precise information.’

Today, the performance of the X-ray tubes can be optimised and the low-energy part of the spectrum, which significantly contributes to the radiation exposure, can be removed. Only radiation that travels through the patient is being used, not the radiation that gets stuck in the patient’s fatty tissue. ‘Low-dose studies, for example of the lung, are possible with such a filtered spectrum,’ the radiologist emphasises.

To date, even applications once considered impossible due to the contrast-to-noise ratio seem promising. Bone marrow oedema, for example, might be visualised with enhanced spectral imaging. The same holds true for tendons, ligaments and cartilage – which are all difficult to image because of the weak signal. How can such potential be explored? Clinically indicated exams, the professor suggests, could simply be performed using conventional dose and spectral imaging. ‘This would be a dose-neutral way to see how precise the information is.’

Will Professor Johnson himself continue his research worldwide.

Aiding maxillofacial, small joints, cervical and ENI diagnoses

‘A precursor in Cone-Beam Computed Tomography (CBCT) imaging, NewTom is the unrivalled benchmark mark in radiology thanks to highly effective research standards, flawless reliability and sheer quality,’ the manufacturer reports. These ingredients make 5G the best way to explore new fields of application. NewTom 5G is recommended for medical radiology specialties with a focus on maxillofacial, small joints, cervical and ENI diagnoses. Users can explore several clinical applications, thanks to the open pass-through style gantry and the motorised patient table.

As a precursor in Cone-Beam Computed Tomography (CBCT) imaging, NewTom is the unrivalled benchmark mark in radiology thanks to highly effective research standards, flawless reliability and sheer quality,’ the manufacturer reports. These ingredients make 5G the best way to explore new fields of application. NewTom 5G is recommended for medical radiology specialties with a focus on maxillofacial, small joints, cervical and ENI diagnoses.

How does spectral – or dual energy – imaging work? Very similar to red and green lights in black-and-white photography. A black-and-white camera provides information on the intensity of the photographed objects: an object that is black under red light is actually green. Different photon energies generate differently coloured light. Spectral imaging applies the same knowledge to X-rays in order to increase the information content in the images,” says Professor Thorsten Johnson who until recently headed the CT department of the University Hospital Munich at Grosshadern. With his team he shaped the development and the clinical application of dual energy imaging.

While in spectral imaging the X-ray image is created in conventional greyscale, but using different photon energies, the system manufacturers follow different approaches to achieve their results.

Dual energy: More information but same radiation dose

Siemens places two CTs with two X-ray tubes in one device. These radiation beams can be operated at different kV levels, they fire from different angles but from the same position on the axis simultaneously on two detectors. We reconstruct images from both projections; Prof. Johnson explains, and in a second step we analyse the images as to their spectral characteristics. In the data set we can identify different substances, particularly heavy elements such as iodine, xenon or calcium. Most – the most successful – applications use contrast agents.

Top: Xenon ventilation shows a defect in the right upper lobe
Centre: Spectral imaging confirms the kidney stone (in red) to be a uric acid stone, which does not require surgery
Bottom: Iodine image of the lung shows a triangular defect indicating a small embolism

Siemens, ‘NewTom 5G is the unrivalled benchmark’

The device features the proprietary ECOBeam technology that provides information on metabolic activities that indicate tumour progress.

With electricity shared by two tubes, valuable additional information is generated using normal dose. Thus high image quality can be achieved with a neutral ‘radiation footprint’.

Different technological approaches

Another approach – used, for example, by GE – is the so-called rapid KV switching technology (RKS), however, which, as Professor Johnson points out, is not entirely dose-neutral. Philips, another major player in diagnostic imaging, offers a system with a detector equipped with two scintillator layers of different sensitivity. The crystals on these layers convert the incoming X-rays into visible light that in turn is detected by optical sensors.

Applications

Spectral imaging is suited for a wide range of applications. In angiography the specific and quantitative detection of iodine contrast agent allows the complete removal of the background, including bone structures. This provides a much better overview of the region of interest and significantly facilitates diagnosis. In peripheral artery occlusive disease the vascular structure is much easier to see and evaluate. Prof. Johnson explains. In terms of 3-D reconstruction, projection without bones accelerates the assessment of intracranial aneurysms or arteriovenous malformations. In addition, with faster speed is the essence. During his term as Head of the CT Department at the Grosshadern University Hospital, his team has looked at more than 30% of all protocols were geared towards dual energy.

The competition: MRI

For Prof. Johnson, MRI is clearly a competitor of spectral imaging. However, patient cohorts and the resource situation are completely different for the two modalities. While MRI scanners are rarely quickly available, and imaging takes quite some time, dual energy CT scanners are not yet widely used – also because in Germany, for example, the statutory health insurers do not reimburse the additional costs of spectral imaging.

Looking ahead

Where is spectral imaging development heading? According to Prof. Johnson, one trend is increased performance of the X-ray tubes: voltage changes in 10 kV steps, higher maximum, higher density filters. ‘This new generation of dual energy systems provides even better contrast – and thus more precise information.’

Today, the performance of the X-ray tubes can be optimised and the low-energy part of the spectrum, which significantly contributes to the radiation exposure, can be removed. Only radiation that travels through the patient is being used, not the radiation that gets stuck in the patient’s fatty tissue. ‘Low-dose studies, for example of the lung, are possible with such a filtered spectrum,’ the radiologist emphasises.

To date, even applications once considered impossible due to the contrast-to-noise ratio seem promising. Bone marrow oedema, for example, might be visualised with enhanced spectral imaging. The same holds true for tendons, ligaments and cartilage – which are all difficult to image because of the weak signal. How can such potential be explored? Clinically indicated exams, the professor suggests, could simply be performed using conventional dose and spectral imaging. ‘This would be a dose-neutral way to see how precise the information is.’

Will Professor Johnson himself continue his research worldwide.

Aiding maxillofacial, small joints, cervical and ENI diagnoses

‘A precursor in Cone-Beam Computed Tomography (CBCT) imaging, NewTom is the unrivalled benchmark mark in radiology thanks to highly effective research standards, flawless reliability and sheer quality,’ the manufacturer reports. These ingredients make 5G the best way to explore new fields of application. NewTom 5G is recommended for medical radiology specialties with a focus on maxillofacial, small joints, cervical and ENI diagnoses. Users can explore several clinical applications, thanks to the open pass-through style gantry and the motorised patient table.

As a precursor in Cone-Beam Computed Tomography (CBCT) imaging, NewTom is the unrivalled benchmark mark in radiology thanks to highly effective research standards, flawless reliability and sheer quality,’ the manufacturer reports. These ingredients make 5G the best way to explore new fields of application. NewTom 5G is recommended for medical radiology specialties with a focus on maxillofacial, small joints, cervical and ENI diagnoses. Users can explore several clinical applications, thanks to the open pass-through style gantry and the motorised patient table.
Virtual anatomy

In 2007, Sara Doll (Institute for Anatomy and Cell Biology, Heidelberg University) and Dr Frederik Giesel (Clinical Director, Radiology Clinic, Department of Nuclear Medicine at Heidelberg University Hospital) initiated the development of virtual anatomy for a seminar aimed at students in the pre-clinical phase of their medical degree course. For the seminar, Roland Unterhinninghofen Dr., Ing, at the Karlsruhe Institute of Technology, developed an interactive educational software package.

The objective was, and continues to be, the creation of a link between radiological image data collated in clinical routine and anatomical content for educational purposes. These image data are then shown in 2-D and 3-D so that students can, for instance, carry out virtual dissections.

Due to high demand for the clinical study phase, Dr Giesel also introduced a seminar entitled 'Virtual Radiology, Nuclear Medicine and Radiotherapy' to cover pathological and hybrid imaging and the use of image-guided radiotherapy.

These links between pre-clinical and clinical subjects (anatomy and radiology) happened against a background of rapid technological change in computer-aided teaching concepts. The introduction of particularly the touch screen made it possible to offer students more post-processing software for images data. Therefore, the software environment in Heidelberg was also adapted for tablet computers.

The teaching and learning environment already facilitates an interactive surf-by 3-D anatomy teaching and learning function. The software facilitates 3-D viewing and virtual dissection as well as 2-D viewing with axial, coronary and sagittal visualisation in real time.

This new technological concept facilitates individual and intuitive work with radiological-anatomical image data and can help to improve spatial imagination. At this year's ECR, the software developer Dr Unterhinninghofen will introduce, for the first time, this technological implementation and new potential.

Most recently, the teaching and learning concept at Heidelberg has also been supported by a CT-scaner in the anatomy department. This makes it possible to digitise preparations prior to macroscopic anatomy with high-resolution procedures and to explore and analyse them alongside the dissection, almost as in ‘real’ medical routine.

Software sustains a link between anatomy and imaging procedures

Carestream is a diverse global company with over 100 years of leadership in healthcare imagining. We provide advanced digital X-ray systems, printers, and dental equipment, as well as breakthrough medical IT solutions. These innovations combine to help healthcare professionals offer patients the best possible care.

This is our purpose and our passion – and the reason our products are used in 150 countries around the world.

Figure 1a-b: Virtual anatomy and virtual dissection of the heart and the thoracic aorta and its major branches. In order to make the topographical relations and anatomical structures more graspable, the chest is removed using the sculpting tool (Fig 1b).

The thoracic aorta and its major branches, the pulmonary trunk, pulmonary veins, superior vena cava and ventricles can be clearly depicted.
Should CTA become a screening procedure?

With low tube voltage, reduced radiation and contrast agent dose, the system delivers sufficient and meaningful data

CT angiography (CTA), an objective method to visually assess cardiovascular risk, provides reliable data that can help save treatment costs. As CTA is becoming less invasive due to reduced radiation and contrast agent dose, low tube voltage and new technologies the technique’s popularity among physicians is increasing. In view of these facts, could CTA become a screening tool for disease prevention? Radiologist Professor Uwe Joseph Schöpf, specialist in cardiology and paediatrics and Director of the Division of Cardiovascular Imaging at the Medical University of South Carolina in Charleston, is carefully optimistic: ‘At least we are now in a position to collect sufficient and meaningful data on this issue.’

Selective procedure

A CTA frequently shows that an alleged high-risk patient is not at such a high risk after all – a fact that has obvious implications for treatment costs. For example, a patient with a high lip level undergoes a CTA but the scan shows no arteriosclerosis whatsoever. Imaging thus indicates that a long-term diet with rigorously decrease lipid levels might not be necessary. In short, Imaging shows which patients really do need therapy and prevention. ‘This is an important contribution to cost-efficiency – made by an imaging procedure. Quite a surprise in view of the fact that imaging is often considered expensive and a prime candidate for cost reduction initiatives,’ the cardiologist points out.

Prospective triggering supports dose reduction

High risk or not, and is there a stenosis in the coronary arteries and if so, how severe is it? These are important questions for cardiac patients – 80 to 90 percent of whom can be examined using a prospectively triggered CTA protocol (approx. 1 to 3 mSv), which provides reliable and precise diagnostic information. A major advantage: Heart rate does not affect this procedure; 80 to 130 bpm are no problem and do not result in artefacts as long as the heart rate is not too irregular. It is important to trigger during systole, not diastole – a fact not every CT operator is aware of, Prof. Schöpf points out. Contrast agents are applied when stenoses need to be detected or when arteriosclerotic changes, including the unspecific coronary plaque, need to be visualised comprehensively. High-speed CT allows further dose reduction – currently, however, this new technology is limited to patients with a suitable heart rate.

Alphas and omegas: low tube voltage

Radiation dose depends on tube voltage and obviously patient physique. With normally built patients we perform a prospectively triggered exam at 100 kV, which means a radiation exposure of 1 mSv and less,’ the expert explains. The adjustment of tube voltage to the individual patient is an important and very simple tool to reduce exposure effectively. Tube voltage also affects the signal transfer of the contrast agent: the lower the voltage the stronger the signal and lower contrast dose. Professor Schöpf: ‘Today, a complete CTA at 80 kV can be performed with 50 ml of contrast agent.’

Increasing new technologies

In recent years the discussion – initiated primarily by US physicians – focused on dose reduction. Today, many technological innovations aim to reduce voltages, independent of patient physique. ‘Now there are even programmes that determine the optimal tube voltage automatically for each patient. This makes sense because standard programmes of 120 kV, which is very popular in the US, obsolete,’ Prof. Schöpf adds. Another factor that previously limited voltage reduction was the actual capacity of X-ray tubes. The systems could develop sufficient current to scan a patient at low voltage only if the patient was very lean. ‘This is another technological problem that has been solved: Now we can use low tube voltage across the board.

Imaging for preventive screening

He believes that more patients can benefit from this technology due to three major factors – low tube voltage as the precondition for reduced radiation dose and reduced contrast dose – which continuously reduce CTA inaccuracy. ‘In view of these innovations we should seriously consider CTA as preventive screening procedure,’ the expert suggests. Whether in the end cardiac CT will really be a suitable procedure to risk stratify patients and to determine medication remains to be seen – currently the available data do not allow us to draw a conclusion. Since there are low invasive techniques and procedures, Prof. Schöpf sums up: ‘It’s our task to do further research on cardiac CT and to provide meaningful data to assess the suitability of the procedure.’

For the sixth time, Alain Blum MD has invited the French CT community to Nancy to attend a symposium on multi-detector CT. The last two years, two days back, drew several hundred radiologists and every CT manufacturer to Nancy for two days of debate, discussion and demonstrations. ‘There have been leaps in technology and developments that are shaking up clinical practice,’ explained Dr Blum, head of the radiology department at the University Hospital Centre in Nancy. ‘Every year we hear that CT is finished when, in fact, manufacturers continue to make enormous investments in research and each year has seen new developments far more significant than we have seen for MRI. Besides, this is also a personal thing – inviting people I like a lot. A third reason for organising the symposium, he told European Hospital, is that ‘Everyone in France is a bit depressed about the financial crisis that has impacted on the possibilities for hospitals to acquire scanners. I think it becomes important to have a more optimistic discussion, telling colleagues we need to move forward, that we must not fall into a psychological morass, that technical developments are beneficial to everyone – the patient, radiologists, healthcare institutions,’ he explained. ‘We see, in some recent purchases that people are ordering low-cost scanners to spend the least amount possible without taking into account that this will affect diagnostic quality and, after all, we need to maintain a sufficient level of quality.’

Images of a 27-year-old female with double hip implants. At left (1), an image acquired at 1.2 mSv/Einstein and processed using iterative reconstruction. At right (2) an acquisition at 1.2 mSv using advanced adaptive iterative dose reduction with metal artefact reduction sequence.

Foreseeing the market of CT systems

Reporting on the CT market up to 2019, GBI Research predicts that lower radiation dose, greater patient comfort and improved workflow in advanced systems will raise implementation rates for computed tomography.

The report presents key trends affecting three systems segments: high-, mid- and low-slice computed tomography systems, and analyses the ‘market dynamics’, all based on data sourced from proprietary databases, primary and secondary research and in-house analysis by the firm’s industry experts. With a focus on key geographies – the USA, Canada, United Kingdom, Germany, France, Italy, Spain, Japan, China, India, Australia and Brazil – the company share data for 2012 is quoted as $3.8 billion and annual market revenue data is forecast to become $5.9 billion by 2019, at
although some clinicians say computed tomography is dead, others far excel those for MRI.

Endorsed by the French Society of Radiology, this year’s symposium was jointly organised by Dr Blum and Marc Zins MD, who leads the radiology group at Saint Joseph Hospital in Paris.

Innovations affecting diagnostic strategies and practice will be a focus for discussions with presentations on dual-energy image acquisition, spectral imaging, perfusion, iterative reconstruction and metal artefact reduction (MAR). Additionally, back end operation for image processing, structured reporting, or archiving and storage will be highlighted.

Managing radiation and dose will fill a whole session, as 2014 sees hospitals across France deploying new software for tracking and monitoring patient and staff exposure.

In Manufacturer’s Corner every CT-scan vendor will present products and the symposium will close with its signature final session featuring a face-off of consoles in a real-time demonstration.

In charge of departments for musculoskeletal, emergency and neck radiology, it is not surprising that Dr Blum singles out advances in MAR as among symposium highlights. ‘Today all manufacturers offer with different levels of effectiveness a reduction in metal artefacts,’ he said. ‘This completely changes orthopaedic imaging. Up to this point we have been troubled with all the metal hardware, and now it is no longer a real obstacle. For example, with hip implants standard radiology shows the prosthesis and bones while the scanner can now show the implant, and show the bones, cement and affected soft tissue better. This becomes important taking into account that patients with pain associated with a prosthesis sometimes present with articular and peri-articular pseudo-tumours linked to a reaction that can be inflammatory or allergic.’

In other practice areas, the increasingly rapid speed of scanners has created new opportunities, notably for cardiac investigations, he added. ‘This has come alongside reductions in radiation dose, and we can perform it at lower dose. ‘Thanks to algorithms for iterative reconstruction, there have been great advancements, and we will see this go even further with coming improvements,’ he said. ‘We’ve seen improvements in post-processing of image that’s much faster and efficient, which improves workflow.

‘We can also do thoracic scans at very low dose, which is why I invited two specialties to debate this around the question ‘Can We Leave Behind Thoracic Radiography?’ In other words, with a dose equivalent to traditional chest X-rays, can we do better with a scanner?’

‘In my opinion, we will see a migration from standard radiology to the CT scanner,’ he predicts.

Today we do a lot of traditional chest X-rays because there is a good spatial resolution and it’s performed at a low dose; but a segmented scan is much more effective and, if today we can perform a scanner exam at the same dose as a chest X-ray, and can improve the workflow, then I believe we will progressively see a shift to thoracic CT and, perhaps in the near future, there will not be as many chest X-rays.’

A New Generation Ultrasound Platform

Don’t miss our Lunch Symposium ‘Ultrasound Solutions Clearly Defined’
Friday, March 7, 12.30 – 13.30
Studio 2014, first level
Hitachi Medical Systems Europe Holding AG · Sumpfstrasse 13 · CH-6300 Zug, www.hitachi-medical-systems.eu

Embracing life through innovation.

Hitachi recognizes the need for effective healthcare in our society today and for our shared future. Utilizing our innovative technologies, Hitachi is committed to improving diagnosis and treatment of disease while enhancing the patient experience.
Interventional therapies for damaged intervertebral discs

Report: Michael Krassnitzer

‘No large incision, no scalpel and no sutures: Radiologically guided, minimally invasive procedures can help many patients with chronic pain when conservative procedures don’t work,’ said Professor Siegfried Thurnher, head of the Department of Radiology and Nuclear Medicine at Vienna’s Hospital of St John of God. The main focal area is the spine. Interventional radiology can precisely access the area where the pain originates and can, for example, administer ozone to

intervertebral discs or inject bone cement into the vertebral repair fractures, or fix metal or plastic sleeves in the dorsal area of the spine.’

Interventional Radiological Obert Symposium (IROS)

At the recent congress of the German, Austrian and Swiss (DeGIR, OGIR, SSCVIR) Associations for Interventional Radiology (IROS 2014) held in Salzburg this January, various sessions focused on pain therapy.

Florian Streitparth MD, from the Radiology Institute at the University Clinic Charité in Berlin, Germany, spoke on the treatment of pain caused by herniated discs and disc degeneration with so-called interdiscal procedures. The basic principle: Removal and cataractization of the discal tissue to reduce pressure and relieve painful nerve compression.

Most important interdiscal procedures:

- Percutaneous laser-disc compression (PLDC): The nucleus of a herniated disc is shrunk using a laser beam
- Intradiscal Electrothermal Therapy (IDET): An electrothermal probe is guided into the disc and heated to 700 Celsius
- Automated percutaneous lumbar discectomy (APLD): The disc nucleus is extracted via aspiration
- Percutaneous laser discoscopy: Water in the disc nucleus is evaporated by laser, which reaches temperatures of up to 6000 Celsius
- Chemonucleolysis: The disc nucleus is liquefied with the help of an enzyme (chymopapain) and then aspirated.

Some of these procedures must still be considered as experimental, the radiologist explains. Initially the entire range of conservative procedures, i.e. medicinal treatment as well as physiotherapy, heat therapy and electrotherapy should be exhausted before one of these new procedures is used. Dr Streitparth emphasised, concluding: ‘At the moment, the evidence of success for these interdiscal procedures is not yet that promising. However, with good patient selection the procedures will become a good option.’

The interdiscal procedures must be on a par with well-established and very effective therapies. There is much evidence regarding the effectiveness of medicinal therapy, he points out. There is also percutaneous therapy (PRT), i.e. percutaneous infiltration of the nerve roots with pain medication and similar procedures.

PRT and other, similar procedures are of low impact and strain and effective at reducing pain in around two thirds of patients, explained Dr Bernhard Oder, Head of the Department of Nuclear Medicine at the Vienna’s Hospital St John of God. In Austria, crystalline corticosteroids are also being used for treatment, he added. However, in Germany crystalline corticosteroids have not been licensed for infiltrations to the spine: German radiologists are therefore hoping for support from their Austrian colleagues to back up their argument. Dr Oder can refer to a study carried out at his hospital involving 700 patients who suffered no retrograde complications after percutaneous infiltration with crystalline corticosteroids.

Chemonucleolysis: The disc nucleus is liquefied with the help of an enzyme (chymopapain) and then aspirated.

A Zurich University medical graduate, and from 1991-2001 an employee at Vienna’s Medical University and the city’s General Hospital, and then Deputy Head of Interventional Radiology at the University Clinic for Radiodiagnostics, since 2002 Professor Siegfried Thurnher, EBIR, has led the Radiology and Nuclear Medicine Department at St. John of God Hospital in Vienna.

The professor is an internationally sought after lecturer, having delivered around 200 scientific congresses. He has also been a Live-Case Surgeon as well as moderator of numerous workshops.
The new great in the EIZO multi-modality series: The RadiForce® RX650.

The new RadiForce RX650 completes the EIZO multi-modality monitor series. The 30-inch 6 megapixel widescreen LCD displays all image applications simultaneously and saves space and costs in comparison with standard multi-screen solutions.

- Flexible hanging protocols
- 30-inch 6 megapixel widescreen LCD
- Color diagnostic monitor for class A
- LED backlight
- 5 year warranty

Further information available on: www.eizo.com

Sharper trabecular, carpal and cortical bone. Balanced presentation of soft tissue and all bone structures being enhanced and represented in a very consistent way. The new software is also reported to be easier to install.

Subtle bone details easily visible

With its larger dynamic range, the new software offers enhanced image detail and visualisation consistency, particularly for images with large variations in signal strength. Image processing is robust and the image is always optimal, independent of the exposure technique, Agfa Healthcare reports. ‘Subtle bone details often tend to fade in the vicinity of implant edges, but these details are now well preserved and easily visible,’ added Dr Vuylsteke: ‘I compare it to being able to hear a pianissimo passage after an explosion.’

In skeletal imaging, for example, no artificial shadows show up next to long bones or metal implants, making subtle details of the interfaces more visible. Trabecular structure is presented with improved sharpness, and there is appropriate transparency in overlapping structures, e.g. carpal bones. In chest X-rays, details from the bones, the mediastinum and lower lung area behind the diaphragm are revealed with better clarity, without impairing lung visualisation. All of which, Jan Leeuws notes, provides radiologists with more image details to aid diagnoses in less time.

‘When we showed the [contributing] radiologists the new version of MUSICA, many got used to the new image presentation very quickly!’ says Piet Vuylsteke.

‘Once you appreciate that level of detail,’ they said, ‘there’s no going back.’

Better visualization of subtle details in the abdomen

structure. To nicely render the most difficult zones of an image, such as the abrupt transitions from low to high density areas, we have applied a new mathematical algorithm - called Fractional Multiscale Processing (FMP).’ Dr Vuylsteke continued. ‘With this algorithm, the image processing filters are further decomposed to elementary fractions, which are processed separately. As a result, we can represent the grayscale differences in a more natural way, without artefacts.

FMP also eliminates the need for window level adjustment to enhance visibility of details. Several additional improvements have been made in the mechanisms that adapt the contrast, noise and grayscale of the images. In general, the images are more homogeneous and pleasant to look at for the radiologist, as well as

Pieter Paul Vuylsteke MSc PhD, who graduated in electronics engineering at Leuven’s Catholic University, is Agfa Healthcare’s senior scientist and expert in medical image processing, currently leading an R&D team of six experts in this field. He is the principal developer of the Musica image contrast enhancement software for digital radiography and inventor of the underlying concept of multi-scale contrast enhancement.

Dr Vuylsteke has also filed 40 patents relating to medical image processing. In 1994 he received the Otto Bayer Medal for honouring scientific research achievements.
The multiple benefits of PET/CT are undisputed – one being the fact that radiopharmaceuticals, which are used at pico and nano levels – are not toxic. Newly developed radiopharmaceuticals are highly specific and thus allow precise molecular characterisation of the tumour in question. However, not only pharmaceutical companies but also academic research institutions produce new substances with radionuclides such as Lu-177 or Y-90 the radiopharmaceutical is introduced intravenously and travels through the entire body, allowing precise radiation – i.e. treatment – of the tumour. This already includes routine, the professor explains. In 85% of cases considered beyond therapy, this form of radiation may at least stabilise tumour growth. However, with an incidence of about 2.5 per 100,000 people, neuroendocrine tumours are rather rare.

PET/CT study using Ga-68-PSMA in a patient with metastatised prostate carcinoma

Clinical purposes. These homemade tracers are extremely important, he adds, because they enable us to perform very specific diagnostic procedures that are tailored to the relevant tumour type.

A twofold benefit Neuroendocrine tumours (NETs) are diagnosed using a substance called DOTATATE, which attaches to somatostatin receptors – expressed by those tumours and thus identifying them. Even more combined with radiodiuclides such as Lu-177 or V:90 the radiopharmaceutical is introduced intravenously and travels through the entire body, allowing precise radiation – i.e. treatment – of the tumour. This already includes routine, the professor explains. In 85% of cases considered beyond therapy, this form of radiation may at least stabilise tumour growth. However, with an incidence of about 2.5 per 100,000 people, neuroendocrine tumours are rather rare.

Prostate carcinoma – first successes, but lots to be done

‘If we could transfer this principle of combining diagnosis and therapy to treat other, more frequent tumour types, prostate carcinoma, for example, that would be major medical progress that would benefit many patients,’ Prof. Bartenstein hopes. To diagnose prostate cancer, patients are scanned with a substance developed in Heidelberg. This attaches to the prostate-specific membrane antigen (PSMA). If the radiopharmaceutical triggers a signal in the lymph nodes, metastases of a prostate carcinoma are confirmed because PSMA is over-expressed in prostate cancer. As far as diagnosis is concerned, this is pretty good news; but we have to work on the corresponding therapy,’ he conceeds. One of the major challenges is high radiation exposure of the kidneys – which needs further research.

Targeted therapy

The advantage of advanced radio-pharmaceuticals is clear. Diagnosis is highly specific, a precondition for a targeted therapy tailored to an individual patient. With prostate cancer, for example, the diagnosis goes far beyond confirming enlarged lymph nodes. The antigens/radio pharmaceutical couple identifies the metastases of the prostate cancer and an individual patient's situation is scheduled, or a personal radiation plan can be designed.

New widespread service

Pharmaceutical companies are known to focus their research on frequent – and thus – profitable indications. For the individual patient, however, the outcome of combining diagnosis and therapy can play an even bigger part in cancer drug development. ‘It goes without saying that we do apply the same high level of safety standards as any pharmaceutical company,’ Prof. Bartenstein explains. However, not every clinic though has the resources to operate a production lab for radiopharmaceuticals and, since the substances are not marketed, there is a very real danger of a two-tiered health care system. ‘Patients who live far away from large research hospitals benefit less from such medi cal progress,’ the professor points out. Despite the much-discussed patient mobility, the reality cannot be denied. The further the geographical distance between a patient and state-of-the-art clinical services, the lower the likelihood that those services will be available for that patient. ‘This is a healthcare policy issue,’ Prof. Bartenstein says, ‘since it was a political decision to tighten pharmaceutical laws that helped to bring about this situation in the first place.’

Validating imaging biomarkers

Report: Mark Nicholls

New imaging biomarkers are helping radiology to play a greater role in new drug developments. With projects underway to validate imaging biomarkers and make them as trusted as pathology, John Waterton, Professor of Translational Imaging at the University of Manchester in England, believes they are set to be increasingly important tools in the development of new targeted cancer therapies. He will outline their rising role in the session ‘Imaging biomarkers in cancer drug development’ on 7th March at ECR 2014.

Aimed at the session Prof. Waterton, who is also Chief Scientist (Personalised Healthcare & Biomarkers) for AstAzeneca, outlined how image measurement can be impacted on by factors such as variations between manufacturers’ equipment. ‘We’ll see that the image measurements, resulting in reluctance among drug developers to adopt quantitative outputs from radiologists without any form of standardisation. Although many imaging biomarkers have been published in cancer research, few are sufficiently robust, routine and well-characterised to be used as routine tools in clinical cancer research. The professor also acknowledged that the qualification and technical validation of imaging biomarkers poses unique challenges not encountered when validating conventional biomarkers measured in vitro with diagnostic devices.

Professor Waterton is a key figure in the Innovative Medicines Initiative (IMI), a €5 billion fund undertaking between the EU and European Federation of Pharmaceutical Industries and Associations, which has initiated projects in drug safety, drug efficacy, knowledge management and training, including developing imaging biomarkers for a role in drug development. The professor’s main project is QuIC-ConCePT, Quantitative Imaging in Cancer: Connecting Cellular Processes with Therapy – an IMI-funded project designed to qualify imaging biomarkers of tumour cell proliferation, apoptosis and necrosis, and is aimed at trying to standardise and understand imaging biomarkers, particularly PET measurement using PET and ADC from diffusion-weighted MRI.

Difficult work on new drugs

At ECR I will be discussing problems of validating imaging biomarkers in general,’ he said. ‘There are already two pharmacodynamic imaging biomarkers that are trusted and highly- interpretable – FDG-PET and DCE-MRI Ki67. Our aim is to double that number to four.

Evaluating a new drug in a comprehensive range of cancers at different doses, schedules and combinations, is a difficult challenge. The aim is to use the pharmacodynamic imaging biomarkers to offer a rapid readout to help drug developers decide whether or not to continue work on an investigational drug. Professor Waterton hopes imaging biomarkers will make drug development more cost-effective, but stresses that will only be so if the outcome of the decision-making biomarker is believed. How, he asks, can you be sure some new imaging biomarker ‘really means drug is not working’?

He hopes ECR delegates will again understand the importance of standardisation of imaging biomarkers, ‘because without that, the development groups and different hospitals, as well as the need for biological validation to mitigate the risk of false negatives. ‘The ultimate benefit for patients is that we bring targeted anti-cancer drugs to the right segment of the patient population earlier. Radiologic imaging offers some real opportunities there because unlike pathology we can measure every part of every lesion in almost every anatomical location.

‘Obviously we need to do this cost effectively, otherwise the drug price would be so high that nobody could afford it,’ he added.

Professor Waterton acknowledged that molecular pathology has been hugely successful in personalised care and cancer drug development over the last decade and, although traditional radiologic structural imaging remains a mainstay to assess objective response and progression-free survival, he noted that the success of pathology has ‘eclipsed’ pharmacodynamic imaging to a degree during that period. ‘One of the reasons for that is that our measurements - the imaging biomarkers – can be difficult to interpret. What this talk will cover is how we can build radiologic imaging biomarkers that are trusted tools for drug developers so radiologists can play an even bigger part in cancer drug development alongside the pathologists.’

PET/CT-specific radiopharmaceuticals for diagnosis and therapy

The session ‘Imaging biomarkers in cancer drug development’ will include a discussion of emerging imaging and quantitative nuclear medicine in drug development, and examine which new imaging biomarkers are on the horizon in drug development, and examine which new imaging biomarkers are on the horizon in drug development.
Setting new clinical values in X-ray imaging

Shimadzu, specialist in diagnostic imaging equipment, is presenting its latest technologies and clinical application solutions at ECR 2014. Among these is the Opescope Acteno, a surgical C-arm system that merges high image quality with ease of use, the company reports.

For use in operating theatres and emergency rooms, the C-arm is fully counter-balanced and provides extra-light movements and positioning, Shimadzu explains; adding ‘The exclusive manual vertical C-arm movements enable much quicker height adjustments in routine operations.’

Other devices on display will include: The Trinias angiography series – multipurpose systems for cardiovascular and angiographic procedures equipped with a 30 x 30 cm FPD supporting a wide range of vascular interventions from head-to-toe, or with a 20 x 20 cm FPD supporting specialist cardiovascular interventions, the firm explains. ‘Innovative designs applying the Score, Smart and Smile philosophy set Shimadzu apart.’

Sonialvision G4 multi-functional R/F system

The new Sonialvision G4 is a high-performance R/F table providing numerous best-in-class features significantly improving functionality and operability,’ the manufacturer reports. ‘Sonialvision G4 covers the widest possible range of examinations, including tomosynthesis for general radiographic imaging and slot scanning. It is equipped with the largest available FPD at 43 x 45 cm and Shimadzu’s next generation digital imaging platform. The SUREEngine technology contributes to creating excellent image quality and enables the natural enhancement of the entire image for clearer revelation of all examination areas, including small, faint targets.’

Evolving technology with high flexibility

MobileDaRt: Evolution’s highly developed functions improve the clinical workflow in mobile DR. Different FPDs with fields of view of 43 x 43 cm, 35 x 43 cm, and 27 x 35 cm are available. The choice of different detectors allows very high flexibility, the firm explains, like running two different detectors to enhance the range of applications, retrofitting the analogue MobileArt series, or even sharing the detectors with compatible digital X-ray rooms.

Sonialvision G4 covers the widest possible range of examinations, including tomosynthesis for general radiographic imaging and slot scanning. It is equipped with the largest available FPD at 43 x 45 cm and Shimadzu’s next generation digital imaging platform. The SUREEngine technology contributes to creating excellent image quality and enables the natural enhancement of the entire image for clearer revelation of all examination areas, including small, faint targets.’

Shimadzu is at the ECR: Expo C. Stand 312.

Professor John Waterton is AstraZeneca’s Chief Scientist for Personalised Healthcare & Biomarkers and Professor of Translational Imaging in the Manchester Academic Health Sciences Centre, University of Manchester. He gained his first degree and PhD at the University of Cambridge and, following postdoctoral work in Vancouver and Oxford, in 1980 he joined AstraZeneca (then ICI), where he established the first in vivo magnetic resonance laboratory in academia. Over the past 35 years he has deployed MRI and other imaging technologies to support drug discovery. He has a particular interest in the evaluation of imaging biomarkers and their translation into validated tools for decision making in clinical research and ultimately in patient care.

www.european-hospital.com
Positron emission mammography (PEM) improves breast cancer management

US-American researchers have shown that positron emission tomography (PET), a tried procedure, is a helpful method to detect breast cancer. Dr Frank Müller and his team of radiologists and nuclear medicine specialists in Ludwigshafen, Germany, are the first office-based physicians in Europe to use positron emission mammography (PEM) for breast cancer screening.

The better of two imaging worlds
PEM is a highly innovative specialist application of PET to visualise tiny breast tissue changes. The technique is based on the same principles as its big sister’ PET; it analyses increased glucose metabolism in the cancer cells via an injected radionuclide – usually FDG, an analogue of glucose incorporating F18, which has a very short half-life. A special detector head identifies FDG uptake and the data are converted into high-resolution images of the breast tissue. The examination procedure itself is very similar to conventional mammography; the breasts are individually placed between two plates and compressed but, while in a conventional mammography a pressure of about 20 kg is applied, PEM requires only 7 kg.

Benefits in early detection, therapy planning, monitoring and follow-up
‘PEM can detect tumours of a mere 1.6 mm – about the width of a rice grain,’ Dr Müller explains. ‘The most important advantage: at this early stage breast-conserving surgery is still possible. Moreover, all suspicious lesions in the breast and the axilla can be identified in one session and surgery can be planned precisely.’ That means that superfluous interventions can be avoided. ‘If a biopsy is needed to histologically confirm a preliminary diagnosis, it can be performed eight during PEM with a device attached to the imaging system. The tissue sample is immediately tested and the radiologist checks whether the sample is sufficient or whether further biopsies are required.’

The more tissue samples are analysed, the more precise the histological results. PEM offers a further major advantage: therapy response can be evaluated reliably after only two weeks. While other modalities allow assessment of therapy response only after about three months, PEM can indicate a necessary change of therapy much earlier. Thus patients are spared ineffective therapies with their negative side effects and they are informed early about therapy successes. This strengthens motivation and confidence in the physician’s work,’ Dr Müller points out.

In addition, because its performance is not affected by scar tissue, PEM is well suited for follow-up and relapse detection.

High specificity and sensitivity
Müller’s own research supports study results by US-American researchers: PEM detects breast tumours with a specificity and sensitivity of more than 90 percent. In a comparative study of PEM and breast MRI in 68 women with suspicious lesions Dr Müller found PEM to show a sensitivity of 100 percent and a specificity of 94 percent with tumours of 9 mm. He is convinced: ‘PEM offers superior precision at high resolution compared to other modalities, such as mammography, breast ultrasound or breast MRI. It thus offers many advantages for the patient with suspected and confirmed breast cancer.’

Overcoming the technical challenge
Digital breast tomosynthesis
Digital breast tomosynthesis offers a number of benefits over other modalities but challenges remain in its optimum clinical application.

A major obstacle is reading time at digital breast tomosynthesis generates extensive image data sets. That is the view of Dr Pontus Timberg, from Lund University in Sweden, who will outline a number of the technical challenges in using digital breast tomosynthesis (DBT) at a Satellite Symposium scheduled for ECR 2014 in Vienna on 6 March.

Dr Timberg, who has conducted extensive research in the area of digital breast tomosynthesis in recent years, will highlight some of the issues facing radiologists involved in the implementation of DBT in a screening situation.

‘Supported by its European hospital ahead of his ECR session – “Technical optimisation of digital breast tomosynthesis for future breast screening’ – Dr Timberg said: ‘Technical optimisation generally aims to improve cancer diagnostics with DBT, but a major challenge is the reading time, which is one of the major obstacles when interpreting 3D image volume.’ During the session he will present different approaches to reduce reading time and also cover limitations with current breast compressions. However, he points out that DBT does have advantages over other modalities. ‘It has the ability to reduce the effect of superimposed tissue, which limits 2D mammography; digital breast tomosynthesis is also a relatively cheap technology that utilises similar technology as used in 2-D mammography,’ he added.

Dr Timberg is hopeful that ECR delegates will take away a number of learning points from the session. ‘There seem to be optimal conditions that are dependent on the type of lesion and diagnostic task,’ he said. ‘Delegates will hopefully consider methods to reduce reading time and viewing conditions in their own optimisation.’

However, there are clear advantages from DBT for patients in terms of reduced interpretation time and improved image quality. The Satellite Symposium has been organised by Siemens Healthcare Digital and focuses on breast tomosynthesis and low dose mammography, looking at how innovations complement clinical routine.

Along with Dr Timberg’s contribution, the session will also look at digital breast tomosynthesis from an initial concept to clinical routine and high image quality with lower dose mammography; and pose questions on whether DBT is the new standard in the diagnostic breast imaging and how to implement DBT as a method in specialist training.
Medicor Germany celebrates 21 successful years

Report Daniela Zimmermann

Created by the Dutch industrialist family Hillekes, in 1993 Medicor expanded beyond the Benelux countries to enter the German-speaking world as Medicor Germany GmbH, selling contrast media injectors for CT, MRI and angiography. Winfried Buckes and Heinz Gerhards, now the company’s Managing Director, were there at the beginning, 21 years ago. We basically started with the purchase of a fax machine, a telephone and two company cars,” Heinz Gerhards recalls.

Initially, the new business was the exclusive representative of Liebel-Flarsheim (LF). However, a few years on, it lost the distribution and service rights due to the LF sale to Mallinckrodt and Covidien Medicor respectively. “This was a sign for my colleague and I to take over the reins ourselves. With the main product from Lorad, now called Hologic, we began a new era at Medicor, which to this date continues to be characterised by a focus on diagnostic and interventional breast imaging.” Perhaps it was a fortunate coincidence that mammography screening was introduced in Germany at around the same time that Medicor realigned itself. This resulted in an increase in business of 25-35% per year, and the service and maintenance range also had to be significantly expanded. Medicor fully utilised this opportunity and now has the biggest service network in Europe’s German-speaking areas, with more than 40 technicians based between the Baltic Sea to the south of the Alps.

“Thanks to this large network the medium-size company, based in Kerpen, North Rhine-Westphalia, is now an attractive business partner for firms wanting to enter the German market with service-intensive products.”

Even Samsung, the giant Far-East manufacturer, trusts the competence of Medicor, by entering into a sales partnership with the firm two years ago. The range of services is rounded off with the bone densitometry programme from Hologic, goods from the microwave ablation devices manufacturer AMICA and products from a large, Chinese HIFU manufacturer, Chongqing Haufu Medical Technology Co., Ltd.

Medicor offers hardware as well as software: partnering Visus, Medicor was the first supplier and service provider to offer and sufficiently service the two information systems used for screening in Germany.

Heinz Gerhards attributes the company’s current market leadership in breast diagnostics not least to this unique selling point. “More than 55% of newly installed systems in Germany are from Medicor, followed, with a slight gap, by Siemens and then a large gap by all other providers. We have more than 350 digital mammography and tomosynthesis scanning systems on the market, along with just under 100 analogue devices and the first positron emission mammography in Europe,” he explains.

In his private life, apart from soccer coaching, he is on the board of the German Cameroun-Help Organisation, which aims to improve living conditions for people in Africa and the provision of cultural exchange. He repeatedly succeeds in combining his passions, such as with the first Hologic-Cup held at the beginning of February in Herzogenrath, or the sale of soft toy giraffes at the ECR in aid of Cameroon-Help.

Heinz Gerhards and Medicor, like many medium-size German companies, stand for a unique success story and laudable commitment.

Dr Pontus Timberg works in Medical Radiation Physics at the Department of Clinical Sciences, Malmö and the Faculty of Medicine in Lund University, Sweden. He is a member of the Malmo Breast Tomosynthesis Group and has conducted several studies of digital breast tomosynthesis, including on the feasibility of using slidding to reduce mammographic radiation dose. His current research involves visibility of single spiculations in digital breast tomosynthesis. Dr Timberg’s work has also covered pressure distribution in mammography and compression of breasts with malignant tumour masses; visibility of micro-calciification clusters and masses in breast tomosynthesis image volumes and digital mammography.

HOW TO INCREASE EFFICIENCY IN RADIOLOGY?
AT SECTRA, WE START BY LISTENING.

Radiology lies at the very center of the healthcare chain. An organization’s overall effectiveness is therefore highly dependent upon on the ability of radiology to provide excellent service to referring physicians. But how is that best done? One thing is certain: communication plays a major role.

To understand how communication between radiologists and referring physicians can be improved, we asked 78 referring physicians and 78 radiologists to give their views on the process of ordering studies and communicating results.

Download our report at sectra.com/report – and if you’d like to continue the discussion, we’re at ECR, booth #H11.
Clinicians agree elastography is an essential functionality in ultrasound, though they are divided on how to use it.

Elastography is in a position much like Doppler 20 years ago,’ according to David Cosgrove, BMBCh, MA, FRCP, FRCP, Professor of Clinical Ultrasound at Imperial College School of Medicine in London. ‘Back then Doppler was new and people were excited about it. They wouldn’t buy a high-end machine without the capability. Yet they didn’t a quite know what they would do with it. That’s now the situation with elastography.’

A renowned expert in ultrasound, Prof. Cosgrove has authored numerous publications and is a key contributor to the ‘Guidelines and Recommendations on the Clinical Use of Ultrasound Elastography’ from the European Federation of Societies for Ultrasound in Medicine and Biology (EFSUMB) that spells out the basic principles and technology as well as the clinical applications of ultrasound elastography. In a similar effort, he helped compile guidelines for the World Federation for Ultrasound in Medicine and Biology (WFUMB), with publication expected later this year.

‘The guidelines have been effective in getting people launched in the right direction, suggesting where to put their efforts, as well as helping to know what was a found wanting,’ he explained, adding that they also provide a good meta-analysis, with the writers of each section summarising the available literature and adding their own experience.

According to the professor, the reason for the uneven adoption of elastography is that its clinical validity is extremely variable: ‘There are so many technologies, some good, some very good, whilst in others the results seem random, in some cases regrettably rather poor.’

The turning point in the wide adoption of colour Doppler came with deep vein thrombosis (DVT) work where it became clear that it was a much easier diagnostic technique and gave greater confidence. Once clinicians found it indispensable for this application, they were more assured in applying it elsewhere, Prof. Cosgrove pointed out.

He believes the breakthrough for greater adoption of elastography will come with investigations on liver fibrosis. ‘Classifying this disease is difficult,’ he said. ‘Biopsies are not nearly as easy as in the breast, and take just a tiny sample of a rather large organ, whereas elastography can sample much, much more. There are a lot of reasons why liver elastography is probably going to be the most important and widely used application.’

The United Kingdom’s National Health Service Technology Adoption Centre (NTAC) found ultrasound elastography, using the shear-wave speed technique, ‘enables a non-invasive, and therefore safer, diagnosis and subsequent monitoring of liver fibrosis when compared to the traditional gold standard procedure of liver biopsy.’

NTAC concluded: ‘The findings suggest that for a cohort of 27,620 patients, the estimated number of patients diagnosed with liver disease in England and Wales, implementing ultrasound elastography is predicted to save a total of £4.14 million, or £520 per patient’.

‘Benefits to patients included a low risk of complications for the non-invasive procedure, no pain, and an outpatient exam of 15 minutes against a hospital stay of up to three days for biopsy procedures.

‘It is a small study with three centres, not as thorough as NICE (National Institute for Health and Clinical Excellence) would have done, but it is quite a strong recommendation,’ Prof. Cosgrove notes.

For the ultrasound component of the Quantitative Imaging Biomarkers Alliance (QIBA) project sponsored by the Radiological Society of North America (RSNA), the work group also narrowed its focus to liver fibrosis, and also selected the shear wave speed elastography technology.

Liver fibrosis emerges as a breakthrough for elastography

Noted at Medica and the

The flexible 6-megapixel 30-inch LED backlit colour display

Recently launched, Totoku’s new six megapixel colour display CCL6502 has a 30-inch screen and brightness of 800 cd/m², making it highly suitable for all diagnostic conventional X-ray applications, the manufacturer reports, adding that the model is equipped with a new LED backlight. The successor of the CCFL technology is based on semiconductors and is known from a variety of consumer products. The benefits are both ecological as well as financial and qualitative nature,’ said Marcel Herrmann, Totoku Medical’s Marketing Manager for displays.

‘Compared to CCFL monitors, LED displays save up to 80 percent of electricity and have a longer life span of about 50 percent – a positive effect on the user’s budget. Furthermore, the CO₂ emission decreases due to reduced energy production. Specifically, those displays will use 15 percent less power than their predecessor. He also mentioned environmental benefits, because LED ‘do not contain critical elements such as mercury’.

Additionally, the standby power consumption has been reduced by 80% due to a newly developed power supply.

The CCL6502 also offers a newly developed flexible input concept, with a dual DVI and Dual DisplayPort Input. ‘In this way users can decide to connect two signals from one workstation or to connect two workstations,’ Totoku adds. ‘With DisplayPort, all recent AMD or NVIDIA cards can be connected. For older Matrox MED or RAD cards the CCL6502 support a SMP simulation mode, this ensures full compatibility here [in Europe].

The United Kingdom’s National Health Service Technology Adoption Centre (NTAC) found ultrasound elastography, using the shear-wave speed technique, ‘enables a non-invasive, and therefore safer, diagnosis and subsequent monitoring of liver fibrosis when compared to the traditional gold standard procedure of liver biopsy.’
Three tiny grills deliver high contrast X-rays

Mammography scans with lower dose and higher contrast - that’s the declared goal of Dr Nik Hauser, Medical Director of the Women’s Clinic and Director of the Interdisciplinary Breast Centre at Kantonsspital Baden, Switzerland, and Professor Marco Stampanoni of Paul Scherrer Institute in Villigen, Switzerland.

By building upon a procedure used in materials research to call more information from X-rays the added significant value to mammography for breast cancer diagnosis. When passing through tissue, X-rays are not only absorbed but also refracted and scattered. The researchers used this additional information to generate breast scans with more detail and higher contrast that show even minute tissue changes.

‘While this principle is theoretically suited for any anatomy, it presented itself for breast scans, because of the high proportion of soft tissue in the breast, which means the effects are particularly well visible,’ Dr Hauser explained.

Core components of this innovative procedure are three tiny grills, one being placed directly behind the X-ray source, the two others behind the tissue sample. ‘By slightly moving these grills we can see which X-rays pass through the tissue and which are attenuated. Since these effects happen at the molecular level, the grills have to be of nano dimensions to be able to register the minute angle scattering of the X-rays,’ the Director of the breast centre explained. The detector records this information, which is transferred onto separate images.

In a next step the conventional absorption image of the mammography and the new scatter images are fused. Alternatively, the grills can be used to generate the usual image quality at lower dose.

The fusion image allows a better evaluation of breast tissue. Minute structures are visualised in enhanced sharpness, which enables more precise evaluation of microcalcifications and tissue changes. Even the fine extensions of the growth are distinctly recognisable. The fusion images themselves can be presented in different ways, e.g. with colour codes. However, the radiologists who evaluated the images in the Hauser/Stampanoni study stuck to familiarity – black and white.

In January 2014 he was appointed Medical Director of the Women’s Clinic.
There is a wealth of information in every radiology exam, but even a phalanx of supercomputers at the National Security Agency (NSA) could not extract it. Referring physicians, and even other radiologists, have a hard time figuring out if a given report is positive or negative. ‘If all a radiologist did at the end of the report was to say if it was positive or negative for the reason it was done in the first place, that would be a major advance in radiology archives,’ said Eliot Siegel MD, Chief of Imaging at Veterans Affairs Maryland Healthcare and Director of the Maryland Imaging Research and Technologies Lab.

Every time we do an examination, for example for CT pulmonary angiography, when we issue a report supplying we do not see any pulmonary emboli, we are not including hundreds of different types of data that we could include for computer algorithms to be able to discover in the future, he told French radiologists at the Sixth Computed Tomography Symposium (Nancy, France).

During a single-shot thoracic scan that takes a few seconds, the CT captures images that can be converted to quantifiable data for lung nodules, breast masses and calcifications, cardiac chamber size, aortic size, coronary artery calcifications, rib fractures, liver texture, lung texture, bone mineral density, loss of height of vertebral bodies, renal volume and renal function.

In an ideal world, the raw data set from this scan would be stored with meta tags and automated mark-up language, making it discoverable for current health policy information or future research. This data could also be shared locally among other support systems in a hospital for treating patients. Instead, once the radiology report is issued, the data is irretrievably lost, ironically the very moment it is sent to cloud storage.

‘We radiologists need to reinvent ourselves,’ Dr Siegel emphasised. ‘If radiology is going to be important, then just as with lab and genomic data, we need to make our data discoverable, indexed and tagged.’

‘Much is at stake, starting with incomes earned by radiologists or approvals of capital equipment expenditures for new equipment.’

In the United States, he suggested, as the concept of Meaningful Use becomes more sophisticated, health-care administrators are going to impose reimbursement for a radiology exam on providing to the healthcare system basic, discoverable types of information.

In the era of Big Data, people are looking for benefits and outcomes they can prove with data, he pointed out. ‘If we can’t give answers to basic questions, we cannot demonstrate the value of the data in radiology. It’s going to become increasingly difficult for radiologists to get reimbursement and funding if people cannot find the data that’s hidden inside our scans, and even inside our reports.

‘What we issue are reports that are analogue in a digital age. It is essentially a tweet that responds to a specific question; but, unlike a tweet, it is not in a form that can be searched by a computer.’

If loss of income from hospital administrators is not a sufficient driver to move radiologists to structured reporting, then perhaps armies of liability lawyers can help.

Currently, radiologists often make recommendations, such as a follow-up exam. Yet there is no way of knowing if the referring physician read the report or acted on the findings. ‘Radiologists make recommendations all the time but practically no one in radiology follows up to see if the recommendations have been carried out,’ Dr Siegel explained. ‘Legally, the radiologist is held accountable for the recommendations where there are autoed consequences or adverse events, such as a tumour that grows. Courts have an expectation that recommendations have been carried out.’

Closing the communications loop with the capital information input to automated systems would improve the ability to track liability associated with error and could accelerate the movement to structured reporting.

‘Eliot Siegel has been out on the leading edge of radiology for 30 years, advocating change for a profession firmly entrenched for a tradition that is filmless, digital radiology archive for the VA system in Maryland. The entire storage capacity I can buy today at any Best Buy for $450, of providing consultative free text interpretations of images. In the 1980s he created the world’s first filmless, digital radiology archive at the VA system in Maryland. The entire storage capacity I can buy today at any Best Buy for $800,000, the same terabyte capacity I can buy today at any Best Buy for $450,’ Siegel explained.

He was responsible for the National Cancer Institute’s (NCI) Cancer Image Archive and served as Workspace Lead for the caBIG In Vivo Imaging Workspace. At radiology events, such as the one in Nancy, he pushes for adoption of the Annotation and Image Markup (AIM) developed by NCI that creates a single standard format to store computer-discoverable image annotations.

He also preaches a vision that speaks to the potential of radiology information joining the full power of Big Data. A first advance would be receiving responses to queries in seconds, not days, he said.

Increasingly, pixel interpretation of structures could be compared and matched with other biomedical information, leading to a definition of imaging biomarkers for disease and its progression.

Yet, he sees the true potential in fulfilling the greater promise of personalised medicine, where a patient’s imaging can be assigned, cross-referenced and correlated with genomic or histological data, and compared to similar cases to make predictions on treatment and outcomes.

Meet up with the team of European Hospital at booth 704, Entrance Level.

Visit our Homepage: www.medicor.biz

EH @ ECR
When it comes to storing images PACS remains king across the industry, but increasingly vendor-neutral archives (VNAs), particularly cloud-based examples, are gaining market share fast due to their ability to bring significant financial, productivity and clinical quality benefits.

When Spire Healthcare, the UK’s second largest provider of private healthcare, looked for a solution to provide their clinicians with access to patient images from any location and PACS environment, it was to Carestream’s cloud-based services that they turned. The seven-year agreement was a natural progression as an upgrade to their existing Carestream PACS. As a result, their Healthcare IT Services will transition from a managed service-based model to a Software-as-a-Service (SaaS) model, an innovative approach to managing imaging information on a predictable, pay-as-you-go basis. Carestream will host the new services in their first independent UK Data Centre.

Spire Healthcare was created in 2007 with the privatization of British United Provident Association (BUPA), and has experienced rapid and steady annual growth. Spire now operates 37 hospitals and 10 clinics nationwide, and is the largest independent hospital group in the UK. Quality of care and service is the key factor in Spire’s continuing success with nine of 10 patients rating their experience either ‘very good’ or ‘excellent’. Three in four employees consider Spire to be a great place to work.

‘Spire was looking for a better way to share diagnostic images, but also they wanted to digitise their workflow processes,’ said Ignace Wautier, Business Development Manager for Northern Europe. ‘They did not want to continue maintaining and supporting the hardware needed for image storage, workflow management, or network security in the knowledge that the whole system would need replacing four years from now. The aim was to get rid of the complexity and establish a predictable cost month after month.’

The Carestream’s solution consists of a cloud-based model to consolidate clinical viewing from disparate systems across the enterprise. By doing this in the cloud, Spire can rely on guaranteed performance and a scalable pay-as-you-go structure together with business continuity and disaster recovery, the company points out. The cloud archive is combined with Vue Motion, a zero footprint viewer that unifies clinical viewing across the entire Spire network so that clinicians can securely view PACS images no matter which system they are using. This ability to access images across multiple platforms is bringing increased flexibility and productivity to Spire consultants and timely results to patients.

‘Vue Motion is not a product but a service for Spire Healthcare,’ Ignace Wautier pointed out. ‘Spire is guaranteed to receive the latest software versions, developments, updates and upgrades. Image availability in seconds is guaranteed plus redundancy of the system, back up and recovery solutions.’

Stephen Hayward, IT Director of Spire Healthcare, said that having access to care records and reports on a mobile device at the clinician’s finger tips will be a great boon going forward: ‘In private health-care the consultant largely decides where he takes his patients. To grow Spire’s business we need to differentiate our services from those of our competitors so that our consultants want to bring their patients to us and consequently grow our revenues.’

Quaiser Malik MD, a consultant radiologist with Spire Healthcare, took part in the pilot implementation and discovered the benefits of being able to work remotely: ‘I no longer have to physically go to the hospital to log in at one of the workstations to access images and previous reports. Although not diagnostic quality, Vue Motion allows me to perform a preliminary report, which can make a massive difference to patient management. I can log in at weekends wherever I am, which is of great advantage. It is an absolutely fabulous tool and advances patient care by providing clinicians with timely reports and a head-start on treatment options.’

According to Andrew Milne, Imaging Manager at Spire Hartwood Hospital, ‘From the patients’ perspective the fact that we can provide these images and reports very quickly is important as people come to the private sector because they want a prompt service and, using this new technology, we can provide that. ’

The fact that it works across different platforms is a great advantage,’ he said. Some of our consultants work at multi sites and the Vue Motion system allows them to access images from any Spire hospital. That means greater flexibility for them and greater flexibility for the patients if they are seen at, for example, another Spire hospital in the region.’

‘Spire was looking for a better way to share diagnostic images, but also they wanted to digitise their workflow processes’

‘Spire was looking for a better way to share diagnostic images, but also they wanted to digitise their workflow processes’

FRENCH RADIologists endorse a new management system

Sky view image of hospital, 'the staff are happy that there is a new management system that allows them to work remotely and still have access to all the information they need.'

‘Cloud services are already a prov- en platform for many hospitals in countries such as France, Germany, the Netherlands, Belgium and the US’, she concluded. ‘In fact today we operate remote archiving for 320 sites worldwide at 10 cloud platforms. As of today, and it keeps increasing, we have 80 million radiology studies filed, representing two petabytes.’

Carestream Vue for cloud-based services

Saskia Groeneveld, Worldwide Marketing Manager for Healthcare Information Solutions believes that the cloud solution is a liberating technology for Spire giving users and administrators peace of mind that they can concentrate on health-care. ‘It also gives them scalability,’ she added. ‘They are a fast-growing organisation and using cloud services allows them flexibility to adapt the service to their changing needs.’

‘Spire was looking for a better way to share diagnostic images, but also they wanted to digitise their workflow processes’

‘Spire was looking for a better way to share diagnostic images, but also they wanted to digitise their workflow processes’

Pay as you use

Carestream’s Managed Print Solutions (MPS), which combines the image quality of its Dryview laser imagers and medical films with a comprehensive, all-inclusive programme, has been used since February last year by Drs Pascal Hauet and Christian Lunel in their busy radiology prac- tice in Paris, France, prior to its commercial release. They report that the solution corresponded exactly with what they wanted - to digitise everything; images, reports, management of remote equipment and to make the information acces- sible via the internet. Dr Hauet: ‘The Carestream solution also means we don’t need to invest capital in equipment, a great advantage. Being billed only on our consumption also fits well with our business model.’

Under the programme; Carestream maintains its laser imagers at the healthcare provider’s location and remotely monitors operations. Now, there is very little printer down- time, according to Dr Hauet. Regular quality control checks are mandatory for mammography exams, so monitoring the machines via the internet before those checks is a definite advantage. ‘I receive alerts before a printer fails, which is essential, particularly when a patient is waiting for their results. When there is a potential lapse in quality, Carestream technicians can detect a failure before it happens’. He firmly believes the biggest benefits of the MPS solution include streamlining inventory manage- ment, consumption monitoring, orders, regulations, and supervising equipment operation. Everything is now simple and accessible for the staff, and having data on the website helps customer relations. Conclusion: ‘It’s better for them and for us.’

Full motorization in 4 axes

For the first time, a mobile C-arm is equipped with motorization that allows control of 4 axes. Complemented by additional features, the new Ziehm Vision RFD Hybrid Edition is tailored exactly to hybrid OR requirements.

- 4 motorized axes for precise positioning of the C-arm via Position Control Center (joystick)
- 25 kW generator for crystal-clear images
- Distance Control to support collision protection
- Isocentric movement with just one click

www.european-hospital.com
High-field and Hybrid

Report: Cornelia Weis-Maug

European Hospital met up with Professor Harald H. Quick, PhD, who was appointed Director of the Erwin L. Hahn Institute (ELH) for Magnetic Resonance (MR) Imaging this February. Being in charge of highfield and hybrid magnetic resonance (MR) imaging, Quick shared his views on the status of and the funding (MR) imaging, Quick on the status of and the financing (MR) imaging, Quick on the status of and the future of PET/MR hybrid imaging technology.

7 Tesla MRI is a platform for clinically-oriented research, not yet a medical product

MR imaging systems at 7T magnetic field strength or above are now an established platform for clinically-oriented research. According to Quick, there are currently about 50 such systems installed worldwide. They were built to enable highfield MR imaging of the entire human body. 7T MRI technology is “the carrot stick”, explains Quick, “which can be used to obtain more details than at 1.5T or 3.0T due to its inherent high signal-to-noise ratio”. However, Quick reckons that “7T is still about two or three years away from becoming a medical product, as issues such as safety and standardisation of the technology have not yet been sufficiently addressed”. The inherent advantage of this technology lies in its excellent soft-tissue contrast, and high spatial resolution which permits to better determine “the anatomical structure down to the finest details”, summarises Quick, who also points out that “7T enables to further characterise the structure of lesions in multiple sclerosis rather than just coating them”. Exactly this is what Quick hopes that, for example, depicting tumour vascularity in a superior way will allow to provide clinicians to pick up structural changes at a much earlier point in time and therefore raise the likelihood of improving patient outcome.

Quick points out that beyond displaying fine structures, depicting tissue and organ function plays an increasing role in highfield MRI. Due to the increased sensitivity of highfield MRI the blood-oxygenation level-dependent (BOLD) effect detectable during a functional MRI, “7T allows to register increased oxygen consumption in the brain, which means that we can indirectly watch the brain think.” But for this to happen, just using strong magnetic fields is not enough. So-called radiofrequency (RF) coils, or antennas, are imperative to excite and readout the MR signal from the particular body area to be investigated. As RF coils for the head are already commercially available, the clinical research into the use of 7T technology focuses mainly on imaging the brain. However, imaging the rest of the body is currently a piecemeal attempt with different institutes concentrating on designing RF coils for specific body parts, such as heart, spine or extremities. Institutes do this in collaboration with MR system producers and clinicians.

ELH in Essen, Quick reveals, “has been devoted to a holistic approach, aiming at depicting each part of the body with specifically designed RF coils. Our group is internationally positioned to develop high-frequency RF transmitter and receiver coils plus multi-channel systems”. In the field of 7T highfield MRI Quick’s team focuses on:

- imaging the heart, prostate and mammography
- designing RF coils and RF technology for whole-body imaging
- ensuring the safety of those RF coils
- adapting sequences for clinical highfield MRI imaging

PET/MR is closer to the clinical side than MRI at 7 Tesla

Having worked closely with Siemens Healthcare on the introduction and advancement of PET/MR hybrid imaging during his tenure as professor at the Institute of Medical Physics at the Friedrich-Alexander-University in Erlangen-Nuremberg, Quick brings to his new job a wealth of experience in the PET/MR realm along with excellent contacts to the industrial partners as well as the PET/MR imaging community.

Status of PET/MR

Quick estimates that globally there are currently about 50 installed PET/MR systems. Unlike 7T highfield MRI, PET/MR systems are already labeled as medical products and pose more extensive clinical experience. However, reimbursement and refinancing are still unresolved, as is their use case, which still needs to be defined.

PET/MR is a diagnostic imaging modality for whole-body oncology (due to the reduced amount of ionizing radiation when compared to PET/CT) and neurology (combining excellent soft-tissue contrast with high sensitivity).

Future areas of PET/MR research at ELH

Quick is passionate about fostering interdisciplinary PET/MR research, joining the efforts of clinicians, manufacturers, physicists and other scientists. Asked about his immediate research priorities, Quick comes up with a long laundry lists of projects. He is particularly keen to investigate the potential for reducing radiodense due to the high sensitivity of the PET detectors in the context of PET/MR, explore “motion correction technologies to correct for breathing and cardiac motion in view of the relatively long PET data acquisition times”, work on attenuation correction (AC) and to develop MR sequences, which will help to provide bone information for MR-based AC. Furthermore, Quick wants to optimise the hybrid imaging workflow in such a way that it “maximizes diagnostic information while minimizing acquisition time”. It is certainly an ambitious list, but Quick is optimistic: “There is a lot of research waiting for us, but the team is enthusiastic and with 7T highfield MR and hybrid PET/MR we have two of the latest and greatest tools for MR imaging research available here in Essen”.

Professor Dr Harald H. Quick studied biomedical and physical engineering at the University of Applied Sciences, Aachen, Germany. Following his first professional appointment at Research Associate at the MRI Centre of the University Hospital Zurich, Switzerland, in 1999-2000 he spent a research year at Johns Hopkins University in Baltimore/USA. Back in Germany he joined the University Hospital Essen, where he founded MR Innovation GmbH. From 2006 to 2009 he was Managing Physicist at Erwin L. Hahn Institute for MRI. In 2009 he was appointed Professor for MRI at Friedrich Alexander University (FAU), Erlangen, but on 1 February 2014 he returned to Essen to head the Erwin L. Hahn Institute for MRI where he also is in charge of high-field and hybrid MRI.

Figure 1: (A) Custom-built 16-channel radiofrequency (RF) transmit/receive body coil for body-MRI at 7 Tesla. Images (B-F) show current examples for 7 Tesla highfield body-MRI, employing different body regions: (B) cine-TrueFISP of the heart, (C-F) gradient-echo images of the kidneys (C), the upper body stem (D), the pelvis (E), and of the spine (F) featuring a two-step examination. All images courtesy of Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen, Germany.

Figure 2: PET/MR hybrid whole-body imaging of a female patient with known squamous cell carcinoma of the lung. While MR imaging (A) provides high spatial resolution and excellent soft tissue contrast for anatomical reference, simultaneously acquired PET imaging (C) reveals radiotracer accumulation in tumors and metastasis with high sensitivity. The image in the middle (B) shows the fusion of MR and PET data. In this patient further metastasis have been located in the brain, the paranasal, and in the rectum.
Compact, comfortable and cost-effective

Feet first into low-noise head to toe imaging

Toshiba’s new 1.5-T MRI Vantage ELAN system is not only cost-effective, the firm reports, but truly compact; it needs only 23 square metres of space. Yet, the system uses the same type of magnet as other Toshiba products to achieve excellent image quality.

‘With its widely recognised complete M-Power clinical application software suite and HHS (High Speed Switching) technology to facilitate the use of 16 channel coils, the Vantage ELAN manages to maintain ease of use for the operator while offering a quiet and comfortable patient experience due to Toshiba’s renowned Pianissimo noise reduction technology.’

That low-noise level, which significantly improves patient experience, was among the system’s features that particularly attracted radiologist Dr Peter Thorsten since it’s innovation. When expanding his radiology practice in Güstrow, Germany, he selected this system – the first outside Japan – as a ‘natural choice’ due to his successful relationship with Toshiba since 2010, when the firm installed a Vantage Titan MRI scanner.

All types of examinations

Dr Thorsten is particularly enthusiastic about the user interface of the Vantage ELAN and because his staff is already familiar with the Toshiba protocols he feels the shift to the new system will be smooth. ‘I had the opportunity to look at the system at RSNA in Chicago and was so impressed by its performance and the coil concept that we decided to acquire it,’ he explained. It will be used for all types of examinations from the head to the spinal column and joints. ‘Abdominal MRI is also an important area in our office and the Toshiba sequence strategy has enabled us to specialise in MR phlebography,’ he added.

Aiming to grow its market share, particularly in Europe, Toshiba is confident that the addition of this new system to its MRI portfolio boosts market opportunities.

Alain Bertinatti, Toshiba Medical Systems MR Business Unit Manager in Europe, underlined that the current cost pressure on hospitals and healthcare systems was a major consideration in the development of the new product. Faced with the decision to either compromise on its renowned image quality, design, technical innovation or unique set of features, or to endeavour to deliver a high quality product at a competitive price, the company clearly opted for the latter. The resulting product is reported to combine outstanding homogeneity and a 1.5-T ultra-short zero boil-off magnet to provide excellent image quality. In addition, the Vantage ELAN is equipped with Eco Mode technology to ensure highest energy efficiency.

All the latest innovations of Toshiba systems are available on the system, Alain Bertinatti pointed out, ‘including Toshiba’s advanced non-contrast MBA technology, which allows exceptional vascular imaging without the use of contrast.’

In practice - less contrast agents in MR angiography

Dr Isabelle Parienty-Boyer from the Radiodiagnostic and Medical Imaging Centre, Hauts-de-Seine, France, is a specialist in non-contrast renal MR angiography. She has performed about 700 examinations of renal arteries in renal insufficiency patients. Since referring nephrologists often ask her to refrain from using gadolinium she works with Toshiba’s Vantage MR system without contrast agents because the results are as good as the contrast-enhanced scans, sometimes even better. In her opinion Toshiba offers the best equipment for this type of examination because of the ability to use two planes, axial and coronal.

Quick and easy installation

Hans Baartman, Senior Product Manager at Toshiba Medical Systems in Europe, highlighted another major benefit: the ease and speed of installation. Since the new system requires little space it can simply be integrated into the examination room.

With all elements integrated, such as ECG and recording equipment, the system is ergonomically designed to be comfortable for operators. Feet first imaging significantly enhances the patient experience, Hans Baartman added, and the Pianissimo capability, integrated coils and sound suppression technology reduce the noise of the MRI.

‘There is also the option to tilt the patient’s head 10 or 20 degrees to make the patient feel a little more comfortable. In addition, the new light design of the board helps reduce the claustrophobic feeling many patients experience,’ he pointed out. The Vantage ELAN has a 63 cm aperture with feet first imaging available for all types of examinations, except for scanning of the head and upper torso. Full angio and cardiac suites are available, and the body package can be extended to include the SpineLine application offering fully automated planning of spine examinations. Together, these options enable head to toe imaging.

Time-SLIP of renal vessels, a non-contrast-enhanced MR angiography technique

Tractography of the brain acquired with a DTI scan in 49 directions

Ultracloud-based product series opens a cloud era

Shantou Institute of Ultrasonic Instruments Co., Ltd.
Tel: +86-754-86230510 E-mail: siui@siui.com Website: www.siui.com
Ultrasound in progress

The ability to monitor therapy effects personalises care

Ultrasound technology is continuously developing and competing with the sectional imaging procedures – therapy progress can be monitored, facilitating personalised medicine. At Heidelberg University Hospital there is excitement about the first use, worldwide, of the latest ultrasound innovation from Siemens. The brand new HELX Evolution not only provides much-improved image quality and far more precise and detailed examination facilities for clinical routine but also, thanks to the special measuring procedure for tissue elasticity, new opportunities to monitor the treatment of cancerous diseases.

The objective in Heidelberg is to use the new scanner to research whether the use of higher-impact procedures, such as CT and MRI scanning, as well as the visualisation of the vessels and ducts with contrast media, can be replaced by much lower-cost ultrasound examination procedures.

Measuring tissue elasticity with the help of elastography is, in itself, not a new procedure, but the HELX Evolution from Siemens also makes it possible selectively to determine tissue elasticity within the ROI (region of interest) after the examination. ‘It is possible to not only measure a certain point while scanning, but also to examine the entire ROI of a size of 6cm x 5cm quantitatively at any time.’

‘With current standards, the scanners only deliver a colour-coded map without absolute values, but now it’s possible to extract the absolute value in metres per second at any individual point within the colour-coded map after the examination,’ explains Dr Erick Amarteifio, a senior physician in the Diagnostic and Interventional Radiology Department at Heidelberg University Hospital.

The importance of the actual diagnostic benefit of this absolute value will now be researched. It is known that the speed at which the shear waves spread within the tissue allows conclusions regarding tissue elasticity. The faster the waves spread, the harder the tissue. As many tumours have harder tissue due to high cell density, this can be a first pointer towards a tumorous disease.

Elastography measurement in the mammalian gland: The qualitative analysis shows a distinctly higher propagation velocity of the shear waves within a carcinoma (coded red).

Right: Elastography measurement of a nodule in the thyroid. The nodule in the middle of the image is coded green in the qualitative analysis. The determination of the qualitative value shows the propagation velocity of the shear waves to be 2.48 m/s, which is higher than the propagation velocity of the shear waves in the normal thyroid tissue, pointing towards a firm nodule.

One possible application area could be to assess therapy response for hepatocellular carcinoma (HCC) after transarterial chemo-embolisation (TACE). ‘At the moment, the determination of perfusion during an MRI allows conclusions as to the vitality of the tumour. With larger subcapsular foci in particular, we believe it is beneficial to evaluate whether the change of tissue elasticity may allow conclusions as to therapy response with the help of elastography,’ he explains.

This would considerably simplify the progress examination for this group of patients. Instead of a complex and expensive MRI examination, in the future it may be possible to monitor and assess a focus with the help of a simple, fast and much better tolerated ultrasound examination. ‘In any case,’ Dr Amarteifio confirms, ‘the HELX Evolution improves the opportunities to further utilise elastography.’

Mobile IT has a place within radiology

Future portable devices will be the norm

Workstations and desktops may still be used in future hospitals – will be of clear benefit to medical in a large variety of medical applications. During our interview, Osman Ratib MD, PhD, FAAC, Professor and Division Chair Department of Medical Imaging and Information Sciences, University Hospital of Geneva, and chair of the ECR subcommittee of eHealth and Informatics, discussed the use of mobile IT today and in the future.

Radiologists will use mobile applications mostly for on-call situations where they require rapid access to studies for a quick review or wet read. ‘Dr Ratib explains. ‘These applications are not used for final interpretation.

‘It’s important to mention that portable devices are also commonly used by non-radiologists – i.e. referring physicians, surgeons and other care staff – for the convenience of accessing image data in situations where they don’t have access to a standard computer set up, it’s become very popular for surgeons to take images with them into the operating room.’

With what kind of access? Various types of applications allow access to images: Web apps enable access to images through a web portal, but all the image manipulation and handling is done on the web server. No data is transferred or stored on the tablet.

‘Another type of application will query images from a server and store them temporarily on the device itself. The first solution is easier to implement, the second needs appropriate security features, but has the advantage to allow continuation of the review of images “off line” even without network access. ’

The second solution will need special access management to query images from a server. ‘In some settings the portable tablet can also be a simple extension of a desktop computer where you transfer or “synchronise” your data by data transfer. Our portable viewers OsiriX HD for iPad and iPhone support those two last solutions and are fully compatible with DICOM query from most PACS systems.’

What kind of apps is available? ‘Commercial ones provided by imaging vendors as extensions of their PACS – including Siemens, Philips, Fuji, TeraRecon, MimVista, and more – and there are some stand-alone applications, with OsiriX considered the most popular.

How do they differ from desktop/workstation applications? ‘The tablets don’t have the same performance as desktops do. So computers will soon disappear from the consumer market and that we will all use “devices”. I believe part of that is true and we will use desktop computers only for professional and repetitive tasks. There is no reason to put workstations in the clearing house, you can do the same thing with a tablet.’

Is acceptance and penetration general? ‘There is no reason for differences in large and small hospitals. We have seen wide adoption of tablets in medical applications in India and China. On the other hand, all our staff and physicians walk around the hospital with a tablet in hand. Whether or not they use it to access medical data is just a matter of time – for IT departments to adapt to the demand.’

What are the risks, limitations and barriers to widespread implementation? ‘There is always a risk when you handle patient data. Strict rules of confidentiality and data protection must be respected and enforced. This is true for every information technology in medicine. It might require some special settings for securing the tablets, but technical solutions already exist.’

What’s the prognosis for mobile IT in radiology? ‘In a few years everybody will ask how we did it before. Portable devices will just be part of normal life. While we will have “large” devices or workstations to work on, we’ll certainly benefit from portable devices in a large variety of medical applications in radiology, but mostly outside radiology.’

Osman Ratib MD PhD FAAC, Professor and Division Chair at the Department of Medical Imaging and Information Sciences, Geneva University Hospital, is dual board certified in internal medicine in the subspecialty of Cardiology, as well as radiology in the subspecialty of Nuclear Medicine. He also gained a doctorate in Biomedical Physics, in digital imaging. After gaining a Master’s in biophysics and PhD in medical imaging from UCLA in 1989, Prof. Ratib became one of Europe’s most active figures in medical imaging research.

Mobile IT has a place within radiology
Teleradiology and education

Although night diagnoses have high quality, teleradiology services could negatively affect junior radiologists training.

Given the ever more complex radiological examinations, the need to provide care in sparsely populated regions, or new labour law provisions such as the EU working time directive, radiologists are under increased pressure to find solutions to provide imaging services during off-hours.

This holds particularly true for Great Britain, where the severe shortage of radiologists is exacerbated by the fact that implementation of the EU working time directive highly impacts the training structures in radiology. Therefore, several hospitals decided to outsource imaging reporting services to a teleradiology provider among those hospitals is University College Hospital, London, where Dr Joachim Hohmann headed the acute services radiology team in 2010.

To gain a better idea of the teleradiology reporting quality, Dr Hohmann and team began to evaluate the images the following day, then recorded their own findings and compared them to the night readings. 'The review of CT scans of 1,028 patients showed only minor discrepancies that could not be considered medical errors but at most led to a delay in therapy,' he recalled. 'A very positive result!' To structure the comparison of the findings, Dr Hohmann used a disagreement scale from ‘no discrepancies’ (category 0) to ‘significant discrepancies with potentially life-threatening consequences for the patient’ (category 1). No imaging report was classified as 1 and in 79% of cases the team matched the assessment of their teleradiology colleagues (category 5). 16 percent of the cases were classified in category 2: discrepancies regarding style or presentation of the findings. Differences in opinion as defined in category 3 and 2 were found in percent, resp. 1.3% of cases – with the latter percentage translating into exactly 15 patients. Since the patients were followed up for six months, Dr Hohmann could assess the accuracy of the readings. In eight out of thirteen cases my team was correct, in two cases the teleradiology provider was correct and for three patients we did not come to an unambiguous result. In short, he concluded, the error rate of the teleradiology provider was 0.8 percent, which is not higher than in regular readings.

Indeed, these results are better than results in comparable studies where the error rate is above 1.6 percent – perhaps because Dr Hohmann demands high quality standards from the teleradiology company: reports between 7 and 9 pm are to be prepared exclusively by specialist physicians in the UK, between 9 pm and 8 am by Australian colleagues on day shifts. In Great Britain and other anglophone countries teleradiology is much more common and is organised in a very structured way, since regulation is not as restrictive as for example in Germany. Moreover, he points out, there is basically no language barrier.

However, teleradiology also has ‘adverse effects’. In Dr Hohmann’s London-based hospital teleradiology was introduced to avoid night shifts for junior physicians. Whilst with implementation of the EU working time directive junior physicians are entitled to longer compensatory rest for night and weekend shifts, due to this law they can no longer complete their training in the prescribed period. ‘In the short run, professional teleradiology services are a good solution, in the long run they may compromise the level of training junior radiologists receive. As a junior physician it is very important to learn to make your own decisions and take responsibility – that’s exactly what night shifts require,’ he stressed.

There are also other issues to solve. Dr Hohmann is concerned about price wars for reporting services and job security for hospital radiologists and he fears that commercialisation of radiology will increase. ‘Nevertheless, I’m convinced that we will be able to find a sustainable solution. In view of the fact that demand will increase by ten to fifteen percent, but per year, we will only have two percent more incoming radiologists, teleradiology is unavoidable.’

* Reprint from RöKo HEUTE 2013, the official publication of the German Radiology Congress.
Small bowel imaging

Cynthia E Keen reports on prototype software with potential to automate motility measurements

For gastrointestinal exams, MRI fluoroscopy offers an alternative to conventional methods of swallowing and gastric emptying that are so repugnant to patients. MRI exams eliminate radiation dose exposure, provide full views of soft-tissue structures, and produce multiplanar imaging. For radiologists, the value of MRI of the small bowel is its ability to display both morphology and motility. Small bowel motility (the bowel wall motions and contractions of muscles within the intestinal wall) dysfunction can be a symptom of inflammatory bowel disease, Crohn’s, obstructive bowel disease, diabetes mellitus and scleroderma (a disease of connective tissue that causes fibrosis to form). The standard protocol for MRI motility assessment begins with the acquisition of several coronal 2-D sequences over the entire small bowel using fast imaging pulse sequences, such as echo planar imaging, fast spin echo, steady-state free precession.

Evaluating small bowel motility is tedious and time consuming. The quantification of small bowel motility patterns, such as contraction frequencies and amplitudes, can be made by measuring the cross-sectional diameter change of selected single small-bowel segments over time. That calculating and plotting measurements is so time consuming and susceptible to errors has formed one of the primary barriers against using MRI-assisted motility assessment in hospital radiology departments. The challenge is that all measurement points must be corrected due to the inherent modality movement or shifting of the small bowel segment.

Radiology researchers at the Institute of Diagnostic, Interventional, and Paediatric Radiology at University Hospital in Bern, with software engineers at Sohard AG in Bern, developed a software prototype (Motasso) to quantify small bowel peristalsis. The software permits semi-automatic measurements of small bowel diameter over long time periods, thus displaying motility.

With colleagues at Zürich University Hospital, ECR session* presenters Doctors Michael A Patak, Sebastian Bickelhaupt and Johannes M Froehlich, conducted a study to validate Motasso software for small bowel motility tracking by comparing it with the traditional manual measurement method. In January, they reported their analysis of 45 MRI enterography exams online in Clinical Radiology.

The research team analysed 91 small-bowel segments. Small bowel motility parameters including contractions per minute, luminal diameter and amplitude were measured three times each in identical segments, using both manual techniques and the semi-automatic software assisted method. They compared the methods for agreement, repeatability, and time needed for each measurement.

The Motasso software worked very well. It produced standardised, accurate identification of the small bowel wall and subsequent quantification of small-bowel motility. It expedited measurement, and performed each assessment in half a minute compared to a minute and a half when done manually. It also provided higher reproducibility and standardisation of data acquisition made by different individuals.

Measurements with Motasso are faster, more accurate, and significantly more reproducible than measurements by hand. The user-friendly point and click interface facilitates widespread clinical adoption of the software,* the authors wrote. They also believe that the Motasso software can provide new insight into the pathophysiology of small-bowel motility-related gastrointestinal complaints. Research is on-going.

For your diary

2 pm, 6th March, Room E2
Quips and Pain Out provide worldwide pain data

Around 50% of surgical patients experience moderate to severe postoperative pain, and ‘minor’ surgery patients receive little pain care

Report: Ralf Mateblowski

Among 40 million surgeries performed each year, more than 50% of the patients experience moderate to severe postoperative pain. The price of poor pain management is high: Pain impedes recovery, causes suffering and often results in the failure of healthcare resources. However, there is hope: Optimised pain therapy can significantly reduce intensity and duration of pain. This is where QUIPS (Quality improvement of postoperative pain therapy) and PAIN OUT (Improvement of postoperative pain outcome) come into play.

Widely spread interest in a German Quips project, which has measured the quality of post-operative pain treatment in over 200 hospitals for over a decade, and its international counterpart PAIN Out, which began in 2009, clearly indicates that most clinicians want to ensure patients recover with the least possible pain.

Professor Robert Masterton was Medical Director and Project coordinator and Head of the Department of Palliative Care at Jena University Hospital. He started the focused pain management with European Hospital correspondent Ralf Mateblowski, who asked why pain management needs benchmark projects such as Quips and PAIN Out and what they aim to achieve.

Prof. Meissner: ‘Generally speaking, effective pain therapy methods do exist, but they are not implemented consistently clinically; one reason being lack of knowledge – for example with regard to the current pain therapy recommendations. Many physicians are convinced they can’t do more with pain. “No wonder”,’ he added, explained a popular misconception that the patient’s pain will disappear ‘sooner or later’. At the same time, the prolonged hospital stay, result in complications, and turn quickly into chronic pain. ‘The other reason is lack of data on outcomes: Because pain assessments are rarely done in standardised way, it’s impossible for most hospitals to assess and compare the quality of their services. Quips and Pain Out provide clinicians and administrators with reliable, real-time information on the quality of care in pain management.’

Since pain perception is subjective, what do methodological standards for pain assessment look like?

Obviously, each individual patient perceives pain differently and we will probably not be able to measure pain objectively, like blood pressure or any other lab parameter. However, despite this subjective factor, there are indeed methods that allow us to gather data on pain, and these data can be compared across hospitals – or across patients – and conclusions can be drawn. As far as chronic pain is concerned, we are convinced that getting a feedback directly from the patient (‘patient-reported outcomes’) is a crucial aspect of quality improvement in pain therapy. You have to really go the extra mile and listen to patients instead of ticking quality assurance checklists.

‘We developed a questionnaire, currently available in 18 languages, and this is an effective and valid tool to evaluate pain therapy. On the day after surgery, a random sample of patients answer questions on functional impacts of pain, side effects of pain therapy and patient satisfaction. The data, with information on the patient’s age, gender and medical history, as well as on the type of surgery and medication added, are anonymised and transmitted to an external database. There they are data analysed and made available back to the participating hospitals. Thus hospitals can easily identify improvement potential, learn best practices from other hospitals and observe the effects of new treatment methods.’

What kind of results have these comparisons yielded so far?

As expected, endoscopic interventions are less painful than open surgery, but not always. What surprised us was the fact that laparoscopic appendectomy is perceived to be rather painful. Even certain standard interventions in ear, nose and throat (ENT), such as tonsillectomy, can lead to more pain than major thoracic surgery. This might be because a patient undergoing major surgery receives intensive pain management and is cared for by Acute Pain Services. When performing under-going a procedure that is regarded as ‘minor’ receives very little – if any – treatment.

‘Providing intensive treatment for major surgery is no doubt a positive result from 20 years of experience with acute pain concepts. Quips and Pain Out are the first projects to allow for the comparison of interventions in a large sample. This will yield important information on minor interventions. The huge burden of poorly researched.’

What are the advantages of the impending integration of the Quips and Pain Out databases?

Apart from these benefits as a quality assurance tool for local use, Quips and Pain Out offer staff at the participating hospitals the opportunity to use the worldwide data from the largest acute pain data base – it has more than 300,000 data sets – for research purposes.

‘In both projects the same questionnaire is used and the results will be evaluated in the same way but, with a single mouse click, you can get an overview on a bench mark sample to compare results internationally. The time needed to participate in the project remains manageable, because only a fraction of the patients will be sampled.’

Why is it so difficult for pain therapy to gain clinical ground?

Today, medical interventions are discussed primarily with regard to their economic benefit. Pain therapy is not an exception. Clinicians are obliged to do no harm to their patients and the experience of pain can be harmful. In palliative care this is not a point of contention.

I strongly suggest looking at pain therapy in very much the same way. We are assuming that pain relief is a value by and in itself. Finally, and importantly, high quality techniques are the most efficient means to increase patients’ satisfaction.

Technology and new techniques cut ICU infections

Improved catheter and biopatch

Report: Brigitte Dinkloh

Patients in intensive care units in hospitals across the UK are benefiting from a combination of new techniques and technology with changes in clinical practice that help to dramatically cut incidences of infection.

The improvement in care and outcomes will be highlighted at the INteNsIve CaRe (ICU) Conference, where Professor Robert Masterton is co-ordinator of QUIPS and PAIN OUT, Professor Ralf Mateblowski, who asked why pain management needs benchmark projects such as Quips and PAIN Out.

Today based at the Institute of Healthcare Associated Infection University of the west of Scotland University Hospital Crosshouse in Kilmarnock, from April 11 to May 2011 Professor Robert Masterton was Medical Director and Consultant Microbiologist at Ayrshire & Arran NHS Board, working part time on ascendent in his professional role. His healthcare background is broad, having worked as a general practitioner, hospital specialist and, more recently, in senior general and medical NHS management roles. The professor has also worked on a UK guideline groups and chaired the UK Working Party that published Hospital Acquired Pneumonia guidelines in 2008. His research interests span Healthcare Associated Infection, infection control, antibiotic management and policy and antibiotic use in variety of clinical conditions.

In recent years, the intensive infection control developments in the ICU, Prof. Masterton will point on, have been driven not only because of changes made in practice and technology, but also the side the biggest change has been the introduction of standardised pathways of care, where we do the same thing every time to the patient, Prof. Masterton told European Hospital. This has been conducted in a number of ways, by the introduction of an integrated care pathway and care bundles - a group of three to five evidence-based interventions which, when performed together, have a better outcome than if performed individually. What each of these do is ensure a consistent high quality of care,’ he explained. ‘However, that has required a quite lot of change because it is not how we have been used to working, so there have been professional cultural changes.’

The second significant change has been through the introduction of technology with new techniques – which have enabled clinicians to reduce infection risks faced by ICU patients. He suggested these centred around devices such as intravascular catheters, with upgrades to existing impregnated catheter devices and intracheotomy tubes that can contain a variety of compounds, such as anti-bacterial agents, to stabilise the condition and aid recovery for the most poorly patients. Some of the compounds are antiseptic, he explained, but they combine with techniques such as the biopatch, which has seen a reduction of intra-vascular line testing for catheter-related blood infections.

Professor Masterton pointed out that, whilst these changes have been implemented in recent years, the benefits are now becoming to become apparent, but the combination of practice and technical changes has been crucial. It’s not possible to separate the practice changes from the technology. Both have happened together, and what we see in the intensive care unit is the combination of these things – and that is been phenomenally successful.

‘We reviewed some units that report no ventilator-associated pneumonia for hundreds of days at a time. If you look back 10 years, only half the patients in the ICU could have ventilator-associated pneumonia. Now, with changes in technique and technology, that has been reduced to zero. There also has been a ten-fold reduction in catheter-related blood stream infections. However, not all ICUs within the NHS are implementing these techniques at this stage, and Professor Masterton said further research is still needed to clarify the level of benefit. ‘Part of the difficulty is that we do not know what the best combination of technology and technique is, we do not know how these individual elements come together in the best way.’

One line of research that he is pursuing is how the environment contributes to infections – and improved cleaning has emerged as a key in seeing a reduction in healthcare-related infection. ‘What we would encourage ICUs to do is to look for the techniques that are brought with changes in technology to reduce infection control risks and occur in both evidence out there about that.

‘What ICUs need to do is adopt bundles of care that will enable them to reduce infection control and use good techniques every time.’
Optimising peri-operative procedures

Non-invasive ventilation in the post-operative patient accelerates recovery and decreases mortality

Report: Brigitte Dinklosh

Many physiological and observa-
tional studies show that non-invasive ventilation (NIV) after thoracic or abdominal surgery is beneficial. In post-operative patients, the use of NIV has been associated with decreased morbidity and overall costs. However, the evidence regarding its efficacy is still evolving.

Today, the clinical team usually selects the type of post-surgical ventilation. The most important factor for the success of non-invasive ventilation is the experience and the expertise of the medical team: it is crucial to understand the patient’s condition and to choose the right treatment for the patient. Non-invasive ventilation after surgery has two potential objectives: first, as a preventive measure to avoid respiratory failure in high-risk patients, and second, after abdominal or thoracic surgery, to improve recovery and patient outcomes.

Non-invasive ventilation is the experience and the expertise of the medical team: it is crucial to understand the patient’s condition and to choose the right treatment for the patient. Non-invasive ventilation after surgery has two potential objectives: first, as a preventive measure to avoid respiratory failure in high-risk patients, and second, after abdominal or thoracic surgery, to improve recovery and patient outcomes.

The Success of NIV depends on the experience and expertise of the medical team.

"Today, the clinical team usually selects the type of post-surgical ventilation. The most important factor for the success of non-invasive ventilation is the experience and the expertise of the medical team: it is crucial to understand the patient’s condition and to choose the right treatment for the patient. Non-invasive ventilation after surgery has two potential objectives: first, as a preventive measure to avoid respiratory failure in high-risk patients, and second, after abdominal or thoracic surgery, to improve recovery and patient outcomes."

Lung-protective ventilation in the operation room

Professor Jaber focuses not only on post-operative ventilation but also on how to prevent non-invasive ventilation in patients suffering post-surgical respiratory distress.

Non-invasive ventilation after surgery has two potential objectives: first, as a preventive measure to avoid respiratory failure in high-risk patients, and second, after abdominal or thoracic surgery, to improve recovery and patient outcomes. Non-invasive ventilation is the experience and the expertise of the medical team: it is crucial to understand the patient’s condition and to choose the right treatment for the patient. Non-invasive ventilation after surgery has two potential objectives: first, as a preventive measure to avoid respiratory failure in high-risk patients, and second, after abdominal or thoracic surgery, to improve recovery and patient outcomes.
Mobile POC applications and educational resources

Physicians and clinicians treating patients at the point of care (POC) can benefit greatly from easy access to materials and resources via their handheld devices,’ comments Jamie Gramz, Director of Global Marketing at Siemens Healthcare Diagnostics. ‘That’s why Siemens is committed to developing mobile applications and educational resources for point-of-care testing. Currently, for example, we offer the e-book, Rapid Analysis – Blood gases and More, a 135-page comprehensive reference manual on blood gas testing, and the ‘ABG Guide’ blood gas application for iPhone or iPad, which identifies normal and abnormal ranges for pH, arterial blood gas, electrolyte and analyte results. Both resources are complimentary and available from the www.siemens.com/pocresources website.

The next educational mobile resource from Siemens is a Urinalysis app that will benefit healthcare professionals performing urinalysis testing at the point of care. ‘We are also incorporating the use of mobile resources into our workflow solutions for POC testing. Our latest version of software for our RAPIDComm Data Management System supports a new web application, as well as an interface to our web-based Personalised Education Plan (PEP), a virtual, single source education and management solution. ‘The RAPIDComm web application allows customers to quickly view the status of POC instruments and troubleshoot issues, even from a handheld device.

For Siemens blood-gas analysers, the updated software makes it possible to remotely view and control instruments directly from an iPad, regardless of location,’ adds Jamie Grama. ‘Operator training is also simplified through the new interface to PEP, which includes a comprehensive library of educational and training materials. POC managers can also use PEP Administrator with Qualification Plans, an addition to PEP to tailor learning plans and create and assign custom e-quizzes to integrate competency management directly with automatic recertification for operators.

The use of mobile resources and hand-held devices will continue to play a stronger role in POC testing and Siemens is focusing on these types of solutions for our customers.’
Cautiously optimistic

Despite a slight drop in sales in 2013 compared to the previous year, for 2014 the German medical diagnostics manufacturers anticipate a positive business development, according to the trend indicator presented by the business association Verband der Diagnostika-Industrie (VDGH) in Berlin. A major topic was the proposed revision of the EU Directive on In Vitro Diagnostics and its likely impact on the industry.

Preliminary figures based on the first three quarters of 2015 indicate that the market for in vitro diagnostics (IVD) in that country decreased for the second year in a row. The good news is that sales volumes increased by only 0.7 percent compared to 1.5 percent in the previous year. As many of the sales losses were driven by losses in the rapid diagnostic test segment, above all blood sugar tests. Matthias Borst, VDHG Chairman of the Board, pointed out that Germany’s statutory health insurants for not reimbursing test costs for type 2 diabetes patients who do not need insulin, and price pressure from increasing international competition.

On the European level, with a preliminary total sales volume of €2.1 billion, Germany remains the major market for in vitro diagnostics while, according to Matthias Borst, preliminary EU market figures also indicate a slight drop for the second consecutive year. Only Scandinavian countries, he says, report any growth to speak of, but these countries account for only six percent of the European IVD market. As in 2012, Southern European countries face the most severe losses, with Spain taking top position from Greece – estimated loss 11 percent.

A more optimistic outlook

Unfazed by the slight sales decrease, German IVD firms are ‘cautiously optimistic’ about the coming business year, according to an international survey among VDHG members. Matthias Borst: ‘Our industry trend indicator slightly rises for 2014 compared to 2013.’ About 70 percent of the association members, who manufacture products for labs and patients, participated in the survey. Companies that offer IVD products for basic and applied life sciences research were not included.

For several years, the entire industry has foreseen a bright future, until late 2011 optimism disappeared. Although about 42 percent of respondents anticipate an economic upturn and two thirds expect sales growth, Association members were asked, for the first time, to comment on the anticipated shortage of qualified staff a third time. Consistently considering this a relevant problem and worried about potential problems recruiting top-class experts and sales staff.

IVD Directive revision

IVD manufacturers worry about the proposed regulation to replace Directive 98/79/EC on In Vitro Diagnostic Medical Devices, which proposes a new risk-oriented product classification system, toughening requirements for product approval and monitoring. Around 40,000 existing lab tests Europe-wide will have to undergo a new conformity assessment, Matthias Borst explains. According to estimates by the European Diagnostic Manufacturers Association (EDMA) the new classification system will cost European IVD manufacturers an additional €380 million, while the EC anticipates additional costs of approx. €425 million. Thus association members, who are mostly small and medium-size, face an enormous financial burden and might also have to increase employees.

Nevertheless both EDMA and VDHG support the proposed regulation. In a first plenary vote in October 2013, the European Parliament adopted a draft version which contained several changes proposed by the Commission. The Commission had proposed to the Commission’s draft. However, they medicine, and has a joint application transition period of three years is ‘absolutely unrealistic’ and demand the: a) Commission to delay the finalisation of the new regulation. It remains to be seen, whether and to which extent the changes proposed by the EP will be included in the final legislation.